1
|
Tölle J, Koch A, Schlicht K, Finger D, Kaehler W, Höppner M, Graetz C, Dörfer C, Schulte DM, Fawzy El-Sayed K. Effect of Hyperbaric Oxygen and Inflammation on Human Gingival Mesenchymal Stem/Progenitor Cells. Cells 2023; 12:2479. [PMID: 37887323 PMCID: PMC10605813 DOI: 10.3390/cells12202479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The present study explores for the first time the effect of hyperbaric oxygen (HBO) on gingival mesenchymal stem cells' (G-MSCs) gene expression profile, intracellular pathway activation, pluripotency, and differentiation potential under an experimental inflammatory setup. G-MSCs were isolated from five healthy individuals (n = 5) and characterized. Single (24 h) or double (72 h) HBO stimulation (100% O2, 3 bar, 90 min) was performed under experimental inflammatory [IL-1β (1 ng/mL)/TNF-α (10 ng/mL)/IFN-γ (100 ng/mL)] and non-inflammatory micro-environment. Next Generation Sequencing and KEGG pathway enrichment analysis, G-MSCs' pluripotency gene expression, Wnt-/β-catenin pathway activation, proliferation, colony formation, and differentiation were investigated. G-MSCs demonstrated all mesenchymal stem/progenitor cells' characteristics. The beneficial effect of a single HBO stimulation was evident, with anti-inflammatory effects and induction of differentiation (TLL1, ID3, BHLHE40), proliferation/cell survival (BMF, ID3, TXNIP, PDK4, ABL2), migration (ABL2) and osteogenic differentiation (p < 0.05). A second HBO stimulation at 72 h had a detrimental effect, significantly increasing the inflammation-induced cellular stress and ROS accumulation through HMOX1, BHLHE40, and ARL4C amplification and pathway enrichment (p < 0.05). Results outline a positive short-term single HBO anti-inflammatory, regenerative, and differentiation stimulatory effect on G-MSCs. A second (72 h) stimulation is detrimental to the same properties. The current results could open new perspectives in the clinical application of short-termed HBO induction in G-MSCs-mediated periodontal reparative/regenerative mechanisms.
Collapse
Affiliation(s)
- Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Andreas Koch
- German Naval Medical Institute, 24119 Kiel, Germany; (A.K.); (W.K.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein, 24105 Kiel, Germany; (K.S.); (D.M.S.)
| | - Dirk Finger
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Wataru Kaehler
- German Naval Medical Institute, 24119 Kiel, Germany; (A.K.); (W.K.)
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University, 24105 Kiel, Germany;
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein, 24105 Kiel, Germany; (K.S.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Karim Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
2
|
Balestra C, Mrakic-Sposta S, Virgili F. Oxygen Variations-Insights into Hypoxia, Hyperoxia and Hyperbaric Hyperoxia-Is the Dose the Clue? Int J Mol Sci 2023; 24:13472. [PMID: 37686277 PMCID: PMC10488080 DOI: 10.3390/ijms241713472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Molecular oxygen (O2) is one of the four most important elements on Earth (alongside carbon, nitrogen and hydrogen); aerobic organisms depend on it to release energy from carbon-based molecules [...].
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy;
| | - Fabio Virgili
- Interuniversitary Consortium “National Institute for Bio-Structures and Bio-Systems”—I.N.B.B., 00136 Rome, Italy;
| |
Collapse
|
3
|
Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury. Int J Mol Sci 2023; 24:ijms24054261. [PMID: 36901691 PMCID: PMC10002298 DOI: 10.3390/ijms24054261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A growing body of evidence suggests that hyperbaric oxygenation (HBO) may affect the activity of adult neural stem cells (NSCs). Since the role of NSCs in recovery from brain injury is still unclear, the purpose of this study was to investigate the effects of sensorimotor cortex ablation (SCA) and HBO treatment (HBOT) on the processes of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus that is the site of adult neurogenesis. Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), Sham control (S, animals that underwent the surgical procedure without opening the skull), SCA (animals in whom the right sensorimotor cortex was removed via suction ablation), and SCA + HBO (operated animals that passed HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. Using immunohistochemistry and double immunofluorescence labeling, we show that SCA causes significant loss of neurons in the DG. Newborn neurons in the subgranular zone (SGZ), inner-third, and partially mid-third of the granule cell layer are predominantly affected by SCA. HBOT decreases the SCA-caused loss of immature neurons, prevents reduction of dendritic arborization, and increases proliferation of progenitor cells. Our results suggest a protective effect of HBO by reducing the vulnerability of immature neurons in the adult DG to SCA injury.
Collapse
|
4
|
Kovacevic S, Ivanov M, Zivotic M, Brkic P, Miloradovic Z, Jeremic R, Mihailovic-Stanojevic N, Vajic UJ, Karanovic D, Jovovic D, Nesovic Ostojic J. Immunohistochemical Analysis of 4-HNE, NGAL, and HO-1 Tissue Expression after Apocynin Treatment and HBO Preconditioning in Postischemic Acute Kidney Injury Induced in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10081163. [PMID: 34439411 PMCID: PMC8388865 DOI: 10.3390/antiox10081163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress has been considered as a central aggravating factor in the development of postischemic acute kidney injury (AKI). The aim of this study was to perform the immunohistochemical analysis of 4-hydroxynonenal (4-HNE), neutrophil gelatinase-associated lipocalin (NGAL), and heme oxygenase-1 (HO-1) tissue expression after apocynin (APO) treatment and hyperbaric oxygenation (HBO) preconditioning, applied as single or combined protocol, in postischemic acute kidney injury induced in spontaneously hypertensive rats (SHR). Twenty-four hours before AKI induction, HBO preconditioning was carried out by exposing to pure oxygen (2.026 bar) twice a day, for 60 min in two consecutive days. Acute kidney injury was induced by removal of the right kidney while the left renal artery was occluded for 45 min by atraumatic clamp. Apocynin was applied in a dose of 40 mg/kg body weight, intravenously, 5 min before reperfusion. We showed increased 4-HNE renal expression in postischemic AKI compared to Sham-operated (SHAM) group. Apocynin treatment, with or without HBO preconditioning, improved creatinine and phosphate clearances, in postischemic AKI. This improvement in renal function was accompanied with decreased 4-HNE, while HO-1 kidney expression restored close to the control group level. NGAL renal expression was also decreased after apocynin treatment, and HBO preconditioning, with or without APO treatment. Considering our results, we can say that 4-HNE tissue expression can be used as a marker of oxidative stress in postischemic AKI. On the other hand, apocynin treatment and HBO preconditioning reduced oxidative damage, and this protective effect might be expected even in experimental hypertensive condition.
Collapse
Affiliation(s)
- Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Ivanov
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Maja Zivotic
- Institute of Pathology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia;
| | - Predrag Brkic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia; (P.B.); (R.J.)
| | - Zoran Miloradovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Rada Jeremic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia; (P.B.); (R.J.)
| | - Nevena Mihailovic-Stanojevic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Una Jovana Vajic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Danijela Karanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Djurdjica Jovovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Jelena Nesovic Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia;
- Correspondence: ; Tel./Fax: +381-11-2685-340
| |
Collapse
|
5
|
Balasubramanian N, Sagarkar S, Choudhary AG, Kokare DM, Sakharkar AJ. Epigenetic Blockade of Hippocampal SOD2 Via DNMT3b-Mediated DNA Methylation: Implications in Mild Traumatic Brain Injury-Induced Persistent Oxidative Damage. Mol Neurobiol 2021; 58:1162-1184. [PMID: 33099744 DOI: 10.1007/s12035-020-02166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022]
Abstract
The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
6
|
Tang Y, Feng P, Gui S, Jin X, Zhu J, Lu X. The Protective Effects of Protein-Enriched Fraction from Housefly (Musca domestica) against Aged-Related Brain Aging. J Nutr Sci Vitaminol (Tokyo) 2020; 66:409-416. [PMID: 33132343 DOI: 10.3177/jnsv.66.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Musca domestica larvae are well known for its multifunctions and great nutritional value. The present study aimed at investigating the beneficial effect of Musca domestica larvae extract (Mde) against memory impairment, structural damage and oxidative stress in aged rats. Twenty-month-old rats were gavaged with Mde for 2 mo. Morris Water Maze test indicated Mde prevented aging-induced spatial learning and memory dysfunction in the aged rats. Mde supply was also found to attenuate age-associated changes of brain histology that observed by light microscopy and transmission electron microscopy. Moreover, the increase of antioxidant capacity, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, as well as the decreased methane dicarboxylic aldehyde (MDA) levels, were consistent with these results. Hence, we propose that oral administration of Mde could improve memory impairment via antioxidant action, and Mde has the potential to act as an excellent food supplement or medicine for the attenuation of brain aging.
Collapse
Affiliation(s)
- Yanan Tang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | | | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University
| | - Xiaobao Jin
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Jiayong Zhu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Xuemei Lu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| |
Collapse
|
7
|
Kovacevic S, Ivanov M, Miloradovic Z, Brkic P, Vajic UJ, Zivotic M, Mihailovic-Stanojevic N, Jovovic D, Karanovic D, Jeremic R, Nesovic-Ostojic J. Hyperbaric oxygen preconditioning and the role of NADPH oxidase inhibition in postischemic acute kidney injury induced in spontaneously hypertensive rats. PLoS One 2020; 15:e0226974. [PMID: 31914135 PMCID: PMC6948727 DOI: 10.1371/journal.pone.0226974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Renal ischemia/reperfusion injury is a common cause of acute kidney injury (AKI) and hypertension might contribute to the increased incidence of AKI. The purpose of this study was to investigate the effects of single and combined hyperbaric oxygen (HBO) preconditioning and NADPH oxidase inhibition on oxidative stress, kidney function and structure in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. HBO preconditioning was performed by exposing to pure oxygen (2.026 bar) twice a day for two consecutive days for 60 minutes, and 24h before AKI induction. For AKI induction, the right kidney was removed and ischemia was performed by clamping the left renal artery for 45 minutes. NADPH oxidase inhibition was induced by apocynin (40 mg/kg b.m., intravenously) 5 minutes before reperfusion. AKI significantly increased renal vascular resistance and reduced renal blood flow, which were significantly improved after apocynin treatment. Also, HBO preconditioning, with or without apocynin treatment showed improvement on renal hemodynamics. AKI significantly increased plasma creatinine, urea, phosphate levels and lipid peroxidation in plasma. Remarkable improvement, with decrease in creatinine, urea and phosphate levels was observed in all treated groups. HBO preconditioning, solitary or with apocynin treatment decreased lipid peroxidation in plasma caused by AKI induction. Also, combined with apocynin, it increased catalase activity and solitary, glutathione reductase enzyme activity in erythrocytes. While AKI induction significantly increased plasma KIM– 1 levels, HBO preconditioning, solitary or with apocynin decreased its levels. Considering renal morphology, significant morphological alterations present after AKI induction were significantly improved in all treated groups with reduced tubular dilatation, tubular necrosis in the cortico-medullary zone and PAS positive cast formation. Our results reveal that NADPH oxidase inhibition and hyperbaric oxygen preconditioning, with or without NADPH oxidase inhibition may have beneficial effects, but their protective role should be evaluated in further studies.
Collapse
Affiliation(s)
- Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
- * E-mail: (SK); (JNO)
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Zoran Miloradovic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Predrag Brkic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Una Jovana Vajic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Maja Zivotic
- Department of Pathology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Jovovic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Rada Jeremic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jelena Nesovic-Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
- * E-mail: (SK); (JNO)
| |
Collapse
|
8
|
Kaymaz B, Coban G, Goksel F, Toman H, Golge UH, Komurcu E. Tavşan modelinde ekstremite iskemi-reperfüzyon hasarına ozon tedavisinin etkisi. FAMILY PRACTICE AND PALLIATIVE CARE 2019. [DOI: 10.22391/fppc.596783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Lavrnja I, Parabucki A, Brkic P, Jovanovic T, Dacic S, Savic D, Pantic I, Stojiljkovic M, Pekovic S. Repetitive hyperbaric oxygenation attenuates reactive astrogliosis and suppresses expression of inflammatory mediators in the rat model of brain injury. Mediators Inflamm 2015; 2015:498405. [PMID: 25972624 PMCID: PMC4417949 DOI: 10.1155/2015/498405] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 03/08/2015] [Indexed: 01/16/2023] Open
Abstract
The exact mechanisms by which treatment with hyperbaric oxygen (HBOT) exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI). CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA) for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein), vimentin, and ICAM-1 (intercellular adhesion molecule-1) both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration.
Collapse
Affiliation(s)
- Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Parabucki
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Predrag Brkic
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tomislav Jovanovic
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Centre for Hyperbaric Medicine, 11040 Belgrade, Serbia
| | - Sanja Dacic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11001 Belgrade, Serbia
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Igor Pantic
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Stojiljkovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
10
|
Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 2015; 88:66-72. [PMID: 25576182 DOI: 10.1016/j.neuint.2014.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
Abstract
Oxidative and nitrosative stress (ONS) contributes to the pathogenesis of most brain maladies, and the magnitude of ONS is related to the ability of cellular antioxidants to neutralize the accumulating reactive oxygen and nitrogen species (ROS/RNS). While the major ROS/RNS scavengers and regenerators of bio-oxidized molecules, superoxide dysmutases (SODs), glutathione (GSH), thioredoxin (Trx) and peroxiredoxin (Prx), are distributed in all cellular compartments. This review specifically focuses on the role of the systems operating in mitochondria. There is a growing consensus that the mitochondrial SOD isoform - SOD2 and GSH are critical for the cellular antioxidant defense. Variable changes of the expression or activities of one or more of the mitochondrial antioxidant systems have been documented in the brains derived from human patients and/or in animal models of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), cerebral ischemia, toxic brain cell damage associated with overexposure to mercury or excitotoxins, or hepatic encephalopathy. In many cases, ambiguity of the responses of the different antioxidant systems in one and the same disease needs to be more conclusively evaluated before the balance of the changes is viewed as beneficial or detrimental. Modulation of the mitochondrial antioxidant systems may in the future become a target of antioxidant therapy.
Collapse
Affiliation(s)
- Joanna Ruszkiewicz
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
11
|
Wang DJ, Tian H. Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia–reperfusion injury. J Surg Res 2014; 192:464-70. [DOI: 10.1016/j.jss.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
12
|
Andjus P. Regional Biophysics Conference 2012: an anniversary and a milestone for applications of biophysics in medicine. Croat Med J 2013; 53:515-7. [PMID: 23275316 PMCID: PMC3541577 DOI: 10.3325/cmj.2012.53.515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|