1
|
Wagner BJ, Ettner-Sitter A, Ihlo NA, Behr M, Koelbl S, Brunner SM, Weber F, Rau BM, Schlitt HJ, Brochhausen C, Schoenmehl R, Artinger A, Schott D, Pizon M, Pachmann K, Aung T, Haerteis S, Hackl C. Patient-derived xenografts from circulating cancer stem cells as a preclinical model for personalized pancreatic cancer research. Sci Rep 2025; 15:2896. [PMID: 39843495 PMCID: PMC11754431 DOI: 10.1038/s41598-025-87054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Patient-derived xenografts (PDXs) provide biologically relevant models and potential platforms for the development of treatment strategies for precision medicine in pancreatic cancer. Furthermore, circulating epithelial tumor cells (CETCs/CTCs) are released into the bloodstream by solid tumors and a rare subpopulation-circulating cancer stem cells (cCSCs) - is considered to be responsible for recurrence and plays a key role in metastasis. For the identification of cCSCs, an innovative in vitro assay to generate tumorspheres was established in this study. The number of tumorspheres and CETCs/CTCs was analyzed perioperatively in 25 pancreatic cancer patients. Additionally, an individual in vivo chorioallantoic membrane (CAM) culture system was used to generate PDXs from these tumorspheres. While overall correlations of CETCs/CTCs with clinicopathological parameters did not reach statistical significance, a significant difference in the number of tumorspheres was observed between patient subgroups with lower and higher UICC stages. This finding underscores their potential as biomarkers, providing valuable insights into clinical decision-making and tumor progression. The application of tumorspheres on the CAM successfully established PDXs within 7 days. These xenografts closely resembled the histological features of the primary tumor. Hence, this model represents a novel and fast option for individualized testing of new therapies for PDAC.
Collapse
Affiliation(s)
- Benedikt J Wagner
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Andreas Ettner-Sitter
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Nicolas A Ihlo
- Faculty of Informatics and Data Science, University of Regensburg, Bajuwarenstrasse 4, 93053, Regensburg, Germany
| | - Merle Behr
- Faculty of Informatics and Data Science, University of Regensburg, Bajuwarenstrasse 4, 93053, Regensburg, Germany
| | - Sebastian Koelbl
- Technology Campus Hutthurm, Deggendorf Institute of Technology, Hochleiten 1, 94116, Hutthurm, Germany
| | - Stefan M Brunner
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Bettina M Rau
- Department of General, Visceral and Thoracic Surgery, Academic Teaching Hospital Neumarkt, Nuernberger Strasse 12, 92318, Neumarkt in der Oberpfalz, Germany
| | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Rebecca Schoenmehl
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Annalena Artinger
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | - Monika Pizon
- Simfo GmbH, Kurpromenade 2, 95448, Bayreuth, Germany
- Labor Dr. Pachmann Bayreuth, Kurpromenade 2, 95448, Bayreuth, Germany
| | - Katharina Pachmann
- Simfo GmbH, Kurpromenade 2, 95448, Bayreuth, Germany
- Labor Dr. Pachmann Bayreuth, Kurpromenade 2, 95448, Bayreuth, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Dieter-Goerlitz-Platz 1, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
2
|
Hongwei S, Xinzhong H, Huiqin X, Shuqin X, Ruonan W, Li L, Jianzhong C, Sijin L. Standard deviation of CT radiomic features among malignancies in each individual: prognostic ability in lung cancer patients. J Cancer Res Clin Oncol 2023; 149:7165-7173. [PMID: 36884114 DOI: 10.1007/s00432-023-04649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE It was reported that individual heterogeneity among malignancies (IHAM) might correlate well to the prognosis of lung cancer; however, seldom radiomic study is on this field. Standard deviation (SD) in statistics could scale average amount of variability of a variable; therefore, we used SD of CT feature (FeatureSD) among primary tumor and malignant lymph nodes (LNs) in an individual to represent IHAM, and its prognostic ability was explored. METHODS The enrolled patients who had accepted PET/CT scans were selected from our previous study (ClinicalTrials.gov, NCT03648151). The patients had primary tumor and at least one LN, and standardized uptake value of LN higher than 2.0 and 2.5 were enrolled as the cohort 1 (n = 94) and 2 (n = 88), respectively. FeatureSD from the combined or thin-section CT were calculated among primary tumor and malignant LNs in each patient, and were separately selected by the survival XGBoost method. Finally, their prognostic ability was compared to the significant patient characteristics identified by the Cox regression. RESULTS In the univariate and multi-variate Cox analysis, surgery, target therapy, and TNM stage were significantly against OS in the both cohorts. In the survival XGBoost analysis of the thin-section CT dataset, none FeatureSD could be repeatably ranked on the top list of the both cohorts. For the combined CT dataset, only one FeatureSD ranked in the top three of both cohorts, but the three significant factors in the Cox regression were not even on the list. Both in the cohort 1 and 2, C-index of the model composed of the three factors could be improved by integrating the continuous FeatureSD; furthermore, that of each factor was obviously lower than FeatureSD. CONCLUSION Standard deviation of CT features among malignant foci within an individual was a powerful prognostic factor in vivo for lung cancer patients.
Collapse
Affiliation(s)
- Si Hongwei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Hao Xinzhong
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Xu Huiqin
- Department of Medical imaging, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, 518035, Shenzhen, China
| | - Xue Shuqin
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Wang Ruonan
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Li Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Cao Jianzhong
- Department of Radiation Oncology, The Cancer Hospital of Shanxi Province, Taiyuan, 030013, Shanxi Province, China
| | - Li Sijin
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| |
Collapse
|
3
|
Cell Lines of Circulating Tumor Cells: What Is Known and What Needs to Be Resolved. J Pers Med 2022; 12:jpm12050666. [PMID: 35629089 PMCID: PMC9148030 DOI: 10.3390/jpm12050666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
The importance of circulating tumor cells (CTC) is well recognized. However, the biological characteristics of CTC in the bloodstream have not yet been examined in detail, due to the limited number of CTC cell lines currently available. Thirty-nine CTC cell lines were reported by 2021. For successful cell culturing, these CTC cell lines were reviewed. Previous studies on short-term cultures of CTC also analyzed approaches for establishing the long-term culture of CTC. Negative selection, hypoxic conditions, three-dimensional conditions, and careful management are preferable for the long-term culture of CTC. However, the establishment of CTC cell lines is dependent on the specific characteristics of each cell type. Therefore, a method to establish CTC cell lines has not yet been developed. Further efforts are needed to resolve this issue.
Collapse
|
4
|
Pizon M, Schott D, Pachmann U, Schobert R, Pizon M, Wozniak M, Bobinski R, Pachmann K. Chick Chorioallantoic Membrane (CAM) Assays as a Model of Patient-Derived Xenografts from Circulating Cancer Stem Cells (cCSCs) in Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14061476. [PMID: 35326627 PMCID: PMC8946779 DOI: 10.3390/cancers14061476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Circulating cancer cells—and in particular their very rare subpopulation, circulating cancer stem cells (cCSCs)—are responsible for recurrence and metastasis. In this study, we present a novel process in which patient-derived xenograft (PDX) can be harvested on chorioallantoic membrane (CAM) from circulating cancer stem cells. In our opinion, the CAM-based PDX model using circulating cancer stem cells can provide a fast, low-cost, easy-to-use, and efficient preclinical platform for drug screening, therapy optimization, and biomarker discovery. Abstract Background: cCSCs are a small subset of circulating tumor cells with cancer stem cell features: resistance to cancer treatments and the capacity for generating metastases. PDX are an appreciated tool in oncology, providing biologically meaningful models of many cancer types, and potential platforms for the development of precision oncology approaches. Commonly, mouse models are used for the in vivo assessment of potential new therapeutic targets in cancers. However, animal models are costly and time consuming. An attractive alternative to such animal experiments is the chicken chorioallantoic membrane assay. Methods: In this study, primary cultures from cCSCs were established using the sphere-forming assay. Subsequently, tumorspheres were transplanted onto the CAM membrane of fertilized chicken eggs to form secondary microtumors. Results: We have developed an innovative in vitro platform for cultivation of cCSCs from peripheral blood of cancer patients. The number of tumorspheres increased significantly with tumor progression and aggressiveness of primary tumor. The number of tumorspheres was positively correlated with Ki-67, Her2 status, and grade score in primary breast tumors. The grafting of tumorspheres onto the CAM was successful and positively correlated with aggressiveness and proliferation capacity of the primary tumor. These tumors pathologically closely resembled the primary tumor. Conclusions: The number of tumorspheres cultured from peripheral blood and the success rate of establishing PDX directly reflect the aggressiveness and proliferation capacity of the primary tumor. A CAM-based PDX model using cCSC provides a fast, low-cost, easy to handle, and powerful preclinical platform for drug screening, therapy optimization, and biomarker discovery.
Collapse
Affiliation(s)
- Monika Pizon
- Department of Research and Development, Transfusion Center Bayreuth, 95448 Bayreuth, Germany; (D.S.); (U.P.); (K.P.)
- Correspondence:
| | - Dorothea Schott
- Department of Research and Development, Transfusion Center Bayreuth, 95448 Bayreuth, Germany; (D.S.); (U.P.); (K.P.)
| | - Ulrich Pachmann
- Department of Research and Development, Transfusion Center Bayreuth, 95448 Bayreuth, Germany; (D.S.); (U.P.); (K.P.)
| | - Rainer Schobert
- Department of Organic Chemistry, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Marek Pizon
- Department of Cardiac Surgery, Clinic of Bayreuth, 95455 Bayreuth, Germany;
| | - Marta Wozniak
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Rafal Bobinski
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, 43-309 Bielsko-Biała, Poland;
| | - Katharina Pachmann
- Department of Research and Development, Transfusion Center Bayreuth, 95448 Bayreuth, Germany; (D.S.); (U.P.); (K.P.)
| |
Collapse
|
5
|
Mäurer M, Pachmann K, Wendt T, Schott D, Wittig A. Prospective Monitoring of Circulating Epithelial Tumor Cells (CETC) Reveals Changes in Gene Expression during Adjuvant Radiotherapy of Breast Cancer Patients. ACTA ACUST UNITED AC 2021; 28:3507-3524. [PMID: 34590615 PMCID: PMC8482075 DOI: 10.3390/curroncol28050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Circulating epithelial tumor cells (CETC) are considered to be responsible for the formation of metastases. Therefore, their importance as prognostic and/or predictive markers in breast cancer is being intensively investigated. Here, the reliability of single cell expression analyses in isolated and collected CETC from whole blood samples of patients with early-stage breast cancer before and after radiotherapy (RT) using the maintrac® method was investigated. Single-cell expression analyses were performed with qRT-PCR on a panel of selected genes: GAPDH, EpCAM, NANOG, Bcl-2, TLR 4, COX-2, PIK3CA, Her-2/neu, Vimentin, c-Met, Ki-67. In all patients, viable CETC were detected prior to and at the end of radiotherapy. In 7 of the 9 (77.8%) subjects examined, the CETC number at the end of the radiotherapy series was higher than before. The majority of genes analyzed showed increased expression after completion of radiotherapy compared to baseline. Procedures and methods used in this pilot study proved to be feasible. The method is suitable for further investigation of the underlying molecular biological mechanisms occurring in cells surviving radiotherapy and possibly the development of radiation resistance.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
- Correspondence:
| | - Katharina Pachmann
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Thomas Wendt
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| | - Dorothea Schott
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| |
Collapse
|
6
|
Ex Vivo Expansion and Drug Sensitivity Profiling of Circulating Tumor Cells from Patients with Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12113394. [PMID: 33207745 PMCID: PMC7696848 DOI: 10.3390/cancers12113394] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) is an overly aggressive cancer characterized by rapid growth, early metastatic spread, and consequently reducing overall survival. As cancer manifestations can differ uniquely between various types, the rapid proliferation of circulating tumor cells (CTC) originating from SCLC was an adequate sample resource to aid the headway in our drug screening technique. With biomarker detection of liquid biopsy as an emerging tool to assist decision-making in personalized cancer pharmacotherapy. In this study, we developed a rapid and reproducible system for preclinical drug testing via the use of a unique CTCs expansion protocol. The expanded CTCs from SCLC formed multiple types of tumorsphere structures and expressed SCLC-specific tumor markers. The drug sensitivity assessment gathered from in vitro expansion of CTCs was able to generate positive clinical therapeutic outcomes. Thus, SCLC patient-derived CTC spheroids are a useful resource for biomarker development and drug sensitivity assessment providing “real-world” therapeutic response circumstances. Abstract Small cell lung cancer (SCLC) represents one of the most aggressive malignancies among cancer types. Not only tumor sample availability is limited, but also the ability for tumor cells to rapidly acquire drug resistance are the rate-limiting bottlenecks for overall survival in current clinical settings. A liquid biopsy capable of capturing and enriching circulating tumor cells (CTCs), together with the possibility of drug screening, is a promising solution. Here, we illustrate the development of a highly efficient ex vivo CTC expansion system based on binary colloidal crystals substrate. Clinical samples were enrolled from 22 patients with SCLC in the study. The CTCs were enriched and expanded from the collected peripheral blood samples. Expanded cells were analyzed for protein expression and observed for drug sensitivity with the use of immunofluorescence and ATP titer evaluation, respectively. Successful CTC spheroid proliferation was established after 4 weeks within 82% of all the collected peripheral blood samples from enrolled patients. Upon immunofluorescence analysis, the enriched cells showed positive markers for EpCAM, TTF-1, synaptophysin and negative for CD45. Additionally, the expanded CTCs demonstrated marked heterogeneity in the expression of E-cadherin and N-cadherin. In a preliminary case series, the drug sensitivity of patient-derived CTC to cisplatin and etoposide was studied to see the correlation with the corresponding therapeutic outcome. In conclusion, our study demonstrates that it is possible to efficiently expand CTCs from SCLC within a clinically relevant time frame; the biomarker information generated from enriched CTCs can assist the selection of effective drugs and improve disease outcome.
Collapse
|
7
|
Heterogeneity of Circulating Tumor Cells in Breast Cancer: Identifying Metastatic Seeds. Int J Mol Sci 2020; 21:ijms21051696. [PMID: 32121639 PMCID: PMC7084665 DOI: 10.3390/ijms21051696] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis being the main cause of breast cancer (BC) mortality represents the complex and multistage process. The entrance of tumor cells into the blood vessels and the appearance of circulating tumor cells (CTCs) seeding and colonizing distant tissues and organs are one of the key stages in the metastatic cascade. Like the primary tumor, CTCs are extremely heterogeneous and presented by clusters and individual cells which consist of phenotypically and genetically distinct subpopulations. However, among this diversity, only a small number of CTCs is able to survive in the bloodstream and to form metastases. The identification of the metastasis-initiating CTCs is believed to be a critical issue in developing therapeutic strategies against metastatic disease. In this review, we summarize the available literature addressing morphological, phenotypic and genetic heterogeneity of CTCs and the molecular makeup of specific subpopulations associated with BC metastasis. Special attention is paid to the need for in vitro and in vivo studies to confirm the tumorigenic and metastatic potential of metastasis-associating CTCs. Finally, we consider treatment approaches that could be effective to eradicate metastatic CTCs and to prevent metastasis.
Collapse
|
8
|
Advances in the Characterization of Circulating Tumor Cells in Metastatic Breast Cancer: Single Cell Analyses and Interactions, and Patient-Derived Models for Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:61-80. [PMID: 32304080 DOI: 10.1007/978-3-030-35805-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is the major cause of breast cancer death worldwide. In metastatic breast cancer, circulating tumor cells (CTCs) can be captured from patient blood samples sequentially over time and thereby serve as surrogates to assess the biology of surviving cancer cells that may still persist in solitary or multiple metastatic sites following treatment. CTCs may thus function as potential real-time decision-making guides for selecting appropriate therapies during the course of disease or for the development and testing of new treatments. The heterogeneous nature of CTCs warrants the use of single cell platforms to better inform our understanding of these cancer cells. Current techniques for single cell analyses and techniques for investigating interactions between cancer and immune cells are discussed. In addition, methodologies for growing patient-derived CTCs in vitro or propagating them in vivo to facilitate CTC drug testing are reviewed. We advocate the use of CTCs in appropriate microenvironments to appraise the effectiveness of cancer chemotherapies, immunotherapies, and for the development of new cancer treatments, fundamental to personalizing and improving the clinical management of metastatic breast cancer.
Collapse
|
9
|
Aaltonen KE, Novosadová V, Bendahl PO, Graffman C, Larsson AM, Rydén L. Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy. Oncotarget 2018; 8:45544-45565. [PMID: 28489591 PMCID: PMC5542207 DOI: 10.18632/oncotarget.17271] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 12/27/2022] Open
Abstract
Resistance to systemic therapy is a major problem in metastatic breast cancer (MBC) that can be explained by initial tumor heterogeneity as well as by evolutionary changes during therapy and tumor progression. Circulating tumor cells (CTCs) detected in a liquid biopsy can be sampled and characterized repeatedly during therapy in order to monitor treatment response and disease progression. Our aim was to investigate how CTC derived gene expression of treatment predictive markers (ESR1/HER2) and other cancer associated markers changed in patient blood samples during six months of first-line systemic treatment for MBC. CTCs from 36 patients were enriched using CellSearch (Janssen Diagnostics) and AdnaTest (QIAGEN) before gene expression analysis was performed with a customized gene panel (TATAA Biocenter). Our results show that antibodies against HER2 and EGFR were valuable to isolate CTCs unidentified by CellSearch and possibly lacking EpCAM expression. Evaluation of patients with clinically different breast cancer subgroups demonstrated that gene expression of treatment predictive markers changed over time. This change was especially prominent for HER2 expression. In conclusion, we found that changed gene expression during first-line systemic therapy for MBC could be a possible explanation for treatment resistance. Characterization of CTCs at several time-points during therapy could be informative for treatment selection.
Collapse
Affiliation(s)
- Kristina E Aaltonen
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Vendula Novosadová
- Institute of Biotechnology, BIOCEV Centre, Czech Academy of Sciences, Vestec u Prahy, Czech Republic
| | - Pär-Ola Bendahl
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Cecilia Graffman
- Skåne Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Anna-Maria Larsson
- Skåne Department of Oncology, Skåne University Hospital, Lund, Sweden.,Department of Translational Cancer Research, Lund University, Lund, Sweden
| | - Lisa Rydén
- Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.,Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Thiele JA, Bethel K, Králíčková M, Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. ANNUAL REVIEW OF PATHOLOGY 2017; 12:419-447. [PMID: 28135562 PMCID: PMC7846475 DOI: 10.1146/annurev-pathol-052016-100256] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of circulating tumor cells (CTCs) has demonstrated clinical validity as a prognostic tool based on enumeration, but since the introduction of this tool to the clinic in 2004, further clinical utility and widespread adoption have been limited. However, immense efforts have been undertaken to further the understanding of the mechanisms behind the biology and kinetics of these rare cells, and progress continues toward better applicability in the clinic. This review describes recent advances within the field, with a particular focus on understanding the biological significance of CTCs, and summarizes emerging methods for identifying, isolating, and interrogating the cells that may provide technical advantages allowing for the discovery of more specific clinical applications. Included is an atlas of high-definition images of CTCs from various cancer types, including uncommon CTCs captured only by broadly inclusive nonenrichment techniques.
Collapse
Affiliation(s)
- J-A Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - K Bethel
- Scripps Clinic Medical Group, Scripps Clinic, La Jolla, California 92121
| | - M Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, 301 00 Pilsen, Czech Republic
| | - P Kuhn
- Bridge Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
11
|
Brouwer A, De Laere B, Peeters D, Peeters M, Salgado R, Dirix L, Van Laere S. Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget 2016; 7:48625-48643. [PMID: 26980749 PMCID: PMC5217044 DOI: 10.18632/oncotarget.8015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023] Open
Abstract
A growing understanding of the molecular biology of cancer and the identification of specific aberrations driving cancer evolution have led to the development of various targeted agents. Therapeutic decisions concerning these drugs are often guided by single biopsies of the primary tumor. Yet, it is well known that tumors can exhibit significant heterogeneity and change over time as a result of selective pressure. Circulating tumor cells (CTCs) are shed from various tumor sites and are thought to represent the molecular landscape of a patient's overall tumor burden. Moreover, a minimal-invasive liquid biopsy facilitates monitoring of clonal evolution during therapy pressure and disease progression in real-time. While more information becomes available regarding heterogeneity among CTCs, comparison between these studies is needed. In this review, we focus on the genomic and transcriptional heterogeneity found in the CTC compartment, and its significance for clinical decision making.
Collapse
Affiliation(s)
- Anja Brouwer
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Bram De Laere
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Dieter Peeters
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Roberto Salgado
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, Brussels, Belgium
| | - Luc Dirix
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Gaiser MR, Daily K, Hoffmann J, Brune M, Enk A, Brownell I. Evaluating blood levels of neuron specific enolase, chromogranin A, and circulating tumor cells as Merkel cell carcinoma biomarkers. Oncotarget 2016; 6:26472-82. [PMID: 26299616 PMCID: PMC4694915 DOI: 10.18632/oncotarget.4500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
Background Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Although used to monitor MCC patients, the clinical utility of neuron-specific enolase (NSE) and chromogranin A (ChrA) blood levels is untested. EpCAM-positive circulating tumor cells (CTC) reflect disease status in several epithelial tumors. Here we investigate the use of NSE and ChrA blood levels and CTC counts as biomarkers for MCC disease behavior. Methods NSE and ChrA blood levels from 60 patients with MCC were retrospectively analyzed; 30 patients were additionally screened for CTC. Biomarker values were correlated to clinical parameters. Results Despite routine use by some physicians, NSE and ChrA blood levels did not correlate with progression free survival, disease specific survival, or MCC recurrence. We found CTC in 97% of tested MCC patients. CTC counts were elevated in patients with active disease, suggesting their potential use in monitoring MCC. Conclusion NSE and ChrA levels were not effective in predicting outcomes or detecting recurrences of MCC. In contrast, CTC counts have potential utility as a biomarker for MCC disease behavior.
Collapse
Affiliation(s)
- Maria Rita Gaiser
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Kenneth Daily
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jochen Hoffmann
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Isaac Brownell
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Khoo BL, Lee SC, Kumar P, Tan TZ, Warkiani ME, Ow SGW, Nandi S, Lim CT, Thiery JP. Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget 2016; 6:15578-93. [PMID: 26008969 PMCID: PMC4558172 DOI: 10.18632/oncotarget.3903] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/24/2015] [Indexed: 12/22/2022] Open
Abstract
Circulating tumor cells (CTCs) are considered as surrogate markers for prognosticating and evaluating patient treatment responses. Here, 226 blood samples from 92 patients with breast cancer, including patients with newly diagnosed or metastatic refractory cancer, and 16 blood samples from healthy subjects were cultured in laser-ablated microwells. Clusters containing an increasing number of cytokeratin-positive (CK+) cells appeared after 2 weeks, while most blood cells disappeared with time. Cultures were heterogeneous and exhibited two distinct sub-populations of cells: 'Small' (≤ 25 μm; high nuclear/cytoplasmic ratio; CD45-) cells, comprising CTCs, and 'Large' (> 25 μm; low nuclear/cytoplasmic ratio; CD68+ or CD56+) cells, corresponding to macrophage and natural killer-like cells. The Small cell fraction also showed copy number increases in six target genes (FGFR1, Myc, CCND1, HER2, TOP2A and ZNF217) associated with breast cancer. These expanded CTCs exhibited different proportions of epithelial-mesenchymal phenotypes and were transferable for further expansion as spheroids in serum-free suspension or 3D cultures. Cluster formation was affected by the presence and duration of systemic therapy, and its persistence may reflect therapeutic resistance. This novel and advanced method estimates CTC clonal heterogeneity and can predict, within a relatively short time frame, patient responses to therapy.
Collapse
Affiliation(s)
- Bee Luan Khoo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Soo Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Prashant Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Samuel G W Ow
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital, Singapore
| | - Sayantani Nandi
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Chwee Teck Lim
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore.,BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
14
|
Zielinska HA, Bahl A, Holly JM, Perks CM. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? BREAST CANCER-TARGETS AND THERAPY 2015; 7:9-19. [PMID: 25632238 PMCID: PMC4304531 DOI: 10.2147/bctt.s43932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evidence indicates that for most human cancers the problem is not that gene mutations occur but is more dependent upon how the body deals with damaged cells. It has been estimated that only about 1% of human cancers can be accounted for by unmistakable hereditary cancer syndromes, only up to 5% can be accounted for due to high-penetrance, single-gene mutations, and in total only 5%-15% of all cancers may have a major genetic component. The predominant contribution to the causation of most sporadic cancers is considered to be environmental factors contributing between 58% and 82% toward different cancers. A nutritionally poor lifestyle is associated with increased risk of many cancers, including those of the breast. As nutrition, energy balance, macronutrient composition of the diet, and physical activity levels are major determinants of insulin-like growth factor (IGF-I) bioactivity, it has been proposed that, at least in part, these increases in cancer risk and progression may be mediated by alterations in the IGF axis, related to nutritional lifestyle. Localized breast cancer is a manageable disease, and death from breast cancer predominantly occurs due to the development of metastatic disease as treatment becomes more complicated with poorer outcomes. In recent years, epithelial-to-mesenchymal transition has emerged as an important contributor to breast cancer progression and malignant transformation resulting in tumor cells with increased potential for migration and invasion. Furthermore, accumulating evidence suggests a strong link between components of the IGF pathway, epithelial-to-mesenchymal transition, and breast cancer mortality. Here, we highlight some recent studies highlighting the relationship between IGFs, IGF-binding protein 3, and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Hanna A Zielinska
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| | - Amit Bahl
- Department of Clinical Oncology, Bristol Haematology and Oncology Centre, University Hospitals Bristol, Bristol, UK
| | - Jeff Mp Holly
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| |
Collapse
|
15
|
Kantara C, O’Connell M, Luthra G, Gajjar A, Sarkar S, Ullrich R, Singh P. Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. J Transl Med 2015; 95:100-12. [PMID: 25347154 PMCID: PMC4281282 DOI: 10.1038/labinvest.2014.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are believed to be resistant to currently available therapies and may be responsible for relapse of cancer in patients. Measuring circulating tumor cells (CTCs) in the blood of patients has emerged as a non-invasive diagnostic procedure for screening patients who may be at high risk for developing metastatic cancers or relapse of the cancer disease. However, accurate detection of CTCs has remained a problem, as epithelial-cell markers used to date are not always reliable for detecting CTCs, especially during epithelial-mesenchymal transition. As CSCs are required to initiate metastatic tumors, our goal was to optimize and standardize a method for identifying circulating CSCs (CCSCs) in patients, using established CSC markers. Here, we report for the first time the detection of CCSCs in the blood of athymic nude mice, bearing metastatic tumors, and in the blood of patients positive for colonic adenocarcinomas. Using a simple and non-expensive method, we isolated a relatively pure population of CSCs (CD45-/CK19+), free of red blood cells and largely free of contaminating CD45+ white blood cells. Enriched CCSCs from patients with colon adenocarcinomas had a malignant phenotype and co-expressed CSC markers (DCLK1/LGR5) with CD44/Annexin A2. CSCs were not found in the blood of non-cancer patients, free of colonic growths. Enriched CCSCs from colon cancer patients grew primary spheroids, suggesting the presence of tumor-initiating cells in the blood of these patients. In conclusion, we have developed a novel diagnostic assay for detecting CSCs in circulation, which may more accurately predict the risk of relapse or metastatic disease in patients. As CSCs can potentially initiate metastatic growths, patients positive for CCSCs can be treated with inhibitory agents that selectively target CSCs, besides conventional treatments, to reduce the risk of relapse/metastatic disease for improving clinical outcomes.
Collapse
Affiliation(s)
- Carla Kantara
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | - Malaney O’Connell
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | | | | | | | - Robert Ullrich
- Department of Radiation Oncology, utmbHealth, Galveston, TX
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| |
Collapse
|
16
|
Teoh JP, Park KM, Wang Y, Hu Q, Kim S, Wu G, Huang S, Maihle N, Kim IM. Endothelin-1/endothelin A receptor-mediated biased signaling is a new player in modulating human ovarian cancer cell tumorigenesis. Cell Signal 2014; 26:2885-95. [PMID: 25194819 DOI: 10.1016/j.cellsig.2014.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
The endothelin-1 (ET-1)/endothelin A receptor (ETAR, a G protein-coupled receptor) axis confers pleiotropic effects on both tumor cells and the tumor microenvironment, modulating chemo-resistance and other tumor-associated processes by activating Gαq- and β-arrestin-mediated pathways. While the precise mechanisms by which these effects occur remain to be elucidated, interference with ETAR signaling has emerged as a promising antitumor strategy in many cancers including ovarian cancer (OC). However, current clinical approaches using ETAR antagonists in the absence of a detailed knowledge of downstream signaling have resulted in multiple adverse side effects and limited therapeutic efficacy. To maximize the safety and efficacy of ETAR-targeted OC therapy, we investigated the role of other G protein subunits such as Gαs in the ETAR-mediated ovarian oncogenic signaling. In HEY (human metastatic OC) cells where the ET-1/ETAR axis is well-characterized, Gαs signaling inhibits ETAR-mediated OC cell migration, wound healing, proliferation and colony formation on soft agar while inducing OC cell apoptosis. Mechanistically, ET-1/ETAR is coupled to Gαs/cAMP signaling in the same ovarian carcinoma-derived cell line. Gαs/cAMP/PKA activation inhibits ETAR-mediated β-arrestin activation of angiogenic/metastatic Calcrl and Icam2 expression. Consistent with our findings, Gαs overexpression is associated with improved survival in OC patients in the analysis of the Cancer Genome Atlas data. In conclusion, our results indicate a novel function for Gαs signaling in ET-1/ETAR-mediated OC oncogenesis and may provide a rationale for a biased signaling mechanism, which selectively activates Gαs-coupled tumor suppressive pathways while blocking Gαq-/β-arrestin-mediated oncogenic pathways, to improve the targeting of the ETAR axis in OC.
Collapse
Affiliation(s)
- Jian-peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Kyoung-mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Qiuping Hu
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Sangmi Kim
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Shuang Huang
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Nita Maihle
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Il-man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|