1
|
Tarhonska K, Wichtowski M, Wow T, Kołacińska-Wow A, Płoszka K, Fendler W, Zawlik I, Paszek S, Zuchowska A, Jabłońska E. DNA Methylation and Demethylation in Triple-Negative Breast Cancer: Associations with Clinicopathological Characteristics and the Chemotherapy Response. Biomedicines 2025; 13:585. [PMID: 40149562 PMCID: PMC11939961 DOI: 10.3390/biomedicines13030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: Triple-negative breast cancer (TNBC) is an aggressive cancer subtype with limited treatment options due to the absence of estrogen, progesterone receptors, and HER2 expression. This study examined the impact of DNA methylation and demethylation markers in tumor tissues on TNBC patients' response to neoadjuvant chemotherapy (NACT) and analyzed the correlation between 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) and clinicopathological characteristics, offering new insights into the predictive value of these epigenetic markers. Methods: The study included 53 TNBC female patients, 19 of whom received neoadjuvant chemotherapy (NACT) before surgery. Global DNA methylation and demethylation levels were quantified using an ELISA-based method to measure 5-mC and 5-hmC content in DNA isolated from pre-treatment biopsy samples (in patients undergoing NACT) and postoperative tissues (in patients without NACT). Results: In patients who received NACT, those with disease progression had significantly higher pretreatment levels of 5-hmC (p = 0.028) and a trend toward higher 5-mC levels (p = 0.054) compared to those with pathological complete response, partial response, or stable disease. Higher 5-mC and 5-hmC levels were significantly associated with higher tumor grade (p = 0.039 and p = 0.017, respectively). Additionally, a positive correlation was observed between the Ki-67 proliferation marker and both 5-mC (rS = 0.340, p = 0.049) and 5-hmC (rS = 0.341, p = 0.048) levels in postoperative tissues. Conclusions: Our study highlights the potential of global DNA methylation and demethylation markers as predictors of tumor aggressiveness and chemotherapy response in TNBC. Further research in larger cohorts is necessary to validate these markers' prognostic and predictive value.
Collapse
Affiliation(s)
- Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348 Lodz, Poland
| | - Mateusz Wichtowski
- Department of Surgical Oncology, Institute of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland;
| | - Thomas Wow
- Medical Practice Thomas Wow, 53 Malwowa Street, 60-175 Poznan, Poland;
| | - Agnieszka Kołacińska-Wow
- Department of Oncological Physiotherapy, Medical University of Lodz, Paderewskiego 4, 93-509 Lodz, Poland;
- Department of General, Gastroenterological and Oncological Surgery, Warsaw Medical University, Banacha 1a, 02-097 Warsaw, Poland
| | - Katarzyna Płoszka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215 Lodz, Poland; (K.P.); (W.F.)
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215 Lodz, Poland; (K.P.); (W.F.)
| | - Izabela Zawlik
- Department of General Genetics, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-310 Rzeszow, Poland; (I.Z.); (S.P.); (A.Z.)
| | - Sylwia Paszek
- Department of General Genetics, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-310 Rzeszow, Poland; (I.Z.); (S.P.); (A.Z.)
| | - Alina Zuchowska
- Department of General Genetics, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-310 Rzeszow, Poland; (I.Z.); (S.P.); (A.Z.)
| | - Ewa Jabłońska
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348 Lodz, Poland;
| |
Collapse
|
2
|
Han EK, Woo JW, Suh KJ, Kim SH, Kim JH, Park SY. PD-L1 (SP142) Expression in Primary and Recurrent/Metastatic Triple-Negative Breast Cancers and Its Clinicopathological Significance. Cancer Res Treat 2024; 56:557-566. [PMID: 38097920 PMCID: PMC11016636 DOI: 10.4143/crt.2023.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE The programmed death-ligand 1 (PD-L1) SP142 assay identifies patients with triple-negative breast cancer (TNBC) who are most likely to respond to the anti-PD-L1 agent atezolizumab. We aimed to compare PD-L1 (SP142) expression between primary and recurrent/metastatic TNBCs and elucidate the clinicopathological features associated with its expression. MATERIALS AND METHODS Primary and recurrent/metastatic TNBCs tested with PD-L1 (SP142) were collected, and clinicopathological information of these cases was obtained through a review of slides and medical records. RESULTS PD-L1 (SP142) positivity was observed in 50.9% (144/283) of primary tumors and 37.8% (31/82) of recurrent/metastatic TNBCs with a significant difference. Recurrent or metastatic sites were associated with PD-L1 positivity, with high PD-L1 positivity in the lung, breast, and soft tissues, and low positivity in the bone, skin, liver, and brain. When comparing PD-L1 expression between primary and matched recurrent/metastatic TNBCs using 55 paired samples, 20 cases (36.4%) showed discordance; 10 cases revealed positive conversion, and another 10 cases revealed negative conversion during metastatic progression. In primary TNBCs, PD-L1 expression was associated with a higher histologic grade, lower T category, pushing border, and higher tumor-infiltrating lymphocyte infiltration. In survival analyses, PD-L1 positivity, especially high positivity, was found to be associated with favorable prognosis of patients. CONCLUSION PD-L1 (SP142) expression was lower in recurrent/metastatic TNBCs, and substantial cases showed discordance in its expression between primary and recurrent/metastatic sites, suggesting that multiple sites may need to be tested for PD-L1 (SP142) when considering atezolizumab therapy. PD-L1 (SP142)-positive TNBCs seems to be associated with favorable clinical outcomes.
Collapse
Affiliation(s)
- Eun Kyung Han
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Won Woo
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
3
|
Babu S, Choudhary A, Jacob L, K N L, A H R, L K R, Saldanha S, Amirtham U, C R V. Frequency of Programmed Death Receptor Ligand 1 Expression and Clinicopathological Factors Associated With Metastatic Triple-Negative Breast Cancer at a Tertiary Cancer Care Centre in South India. Cureus 2024; 16:e55880. [PMID: 38595897 PMCID: PMC11002970 DOI: 10.7759/cureus.55880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) has a poor outcome compared to other subtypes. Immune checkpoint inhibitors (ICIs) have changed the treatment paradigm in metastatic diseases as well as in neoadjuvant setting. The response to these agents is affected by programmed death ligand 1 (PDL1) receptor expression which are reported objectively as a score. PDL1 is a prognostic marker also. Here, we present clinicopathological characteristics of metastatic TNBCs, report the proportion of PDL1 expression and its association with clinicopathological factors as well as survival. Methods This is a prospective study carried out at a tertiary cancer care centre in South India. Case records of all breast cancer patients treated in two years between August 2021 and July 2023 were reviewed, patients with metastatic TNBC were selected. Patient's characteristics, histological features, molecular profile, and treatment were analyzed. PDL1 testing was carried out on pretreatment tumor tissue sections with immunohistochemistry (IHC) (Dako 22C3). PDL1 staining was interpreted as negative or positive based on combined positive score (CPS), with an expression less than 10 considered negative. Results A total of 118 patients were analyzed. With a median age of 46 years (36-65 years), 52.5% (62/118) were premenopausal. Family history of Ca Breast was seen in 22% (26/118) patients. A majority of patients had left-sided tumor 55.9% (66/118). Visceral metastasis was more common 96.6% (82/118) than skeletal. Radical intent of treatment was adopted in 10% as patients had oligometastatic disease at presentation. As front-line treatment, anthracycline-based chemotherapy was administered to the majority 54.2% (64/118). The PDL1 expression with CPS more or equal to 10 was seen in 32.2% (38/118) patients. Survival was associated with menopausal status (p value=0.000) and family history (p value=0.028) but not with PDL1 nor sidedness in our study. Estimated survival at 12 months in PDL1 negative case is 10 ± 0.29 months, while in PDL1 positive case it is slightly more at 10 ± 0.75 months, but difference was not found to be statistically significant (p value=0.15). Conclusion TNBCs are highly aggressive subtype with limited treatment options and poorer outcomes. Our study shows PDL1 expression in 31.66% of the cases similar to other literature from India. Survival is associated with menopausal status and family history. No association was found between survival and PDL1 as well sidedness in our study.
Collapse
Affiliation(s)
- Suresh Babu
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Akansha Choudhary
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Linu Jacob
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Lokesh K N
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Rudresha A H
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Rajeev L K
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Smitha Saldanha
- Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Usha Amirtham
- Pathology, Kidwai Memorial Institute of Oncology, Bangalore, IND
| | - Vijay C R
- Epidemiology and Biostatistics, Kidwai Memorial Institute of Oncology, Bangalore, IND
| |
Collapse
|
4
|
Kina Kilicaslan U, Aru B, Aydin Aksu S, Vardar Aker F, Yanikkaya Demirel G, Gurleyik MG. Relationship between immune checkpoint proteins and neoadjuvant chemotherapy response in breast cancer. Surg Oncol 2024; 52:102037. [PMID: 38290327 DOI: 10.1016/j.suronc.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Following major developments in cancer immunotherapy, treatments targeting immune checkpoint proteins (ICP) gained interest in breast cancer, though studies mostly focus on patients with metastatic disease as well as patients nonresponsive to the conventional treatments. Herein, we aimed to investigate the levels of ICP in tumor stroma and tumor infiltrating lymphocytes, and tumor tissue prior to neoadjuvant chemotherapy administration to evaluate the relationship between ICP levels, clinicopathological parameters, and NAC response. MATERIALS AND METHODS This study was conducted with 51 patients where PD-1, PD-L1, CTLA-4, TIM-3, CD24 and CD44 levels were investigated in CD45+ cells while CD326, CD24, CD44 and PD-L1 protein expression levels were investigated in CD45- population. In addition, CD44 and CD24 levels were evaluated in the tumor stroma. TIL levels were investigated according to the TILS Working Group. Treatment responses after NAC were evaluated according to the MD Anderson RCB score. RESULTS Our results revealed positive correlation between CTLA-4 and CD44 expression in cases with high TIL levels as well as TIL levels and CTLA-4 expression in cases with partial response. Similarly, positive correlation was detected between TIM3 and PD-L1 levels in cases with good response. In addition, a negative correlation between TILs after NAC and PD-1/PD-L1 expression in lymphocytes in cases with partial complete response. CONCLUSIONS Our study provides preliminary data about the correlation between ICP and clinicopathological status and NAC response in breast cancer, in addition to underlining the requirement for further research to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Umut Kina Kilicaslan
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sibel Aydin Aksu
- Department of Radiology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Fugen Vardar Aker
- Department of Pathology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | | | - Meryem Gunay Gurleyik
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey.
| |
Collapse
|
5
|
Uğurluoğlu C, Yormaz S. Clinicopathological and prognostic value of TIL and PD L1 in triple negative breast carcinomas. Pathol Res Pract 2023; 250:154828. [PMID: 37778126 DOI: 10.1016/j.prp.2023.154828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Triple negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, accounts for 15 % of all diagnosed breast cancers. This group, which has the worst clinical outcome, high recurrence rate and poor prognosis, does not benefit from specific treatment. Therefore, there is a need to develop more effective biomarker and therapeutic strategies especially for this group. A positive level of immunity has been found to be associated with patient survival in various organ cancers. More specifically, tumor infiltrating lymphocytes (TIL) have been documented to have strong prognostic value. The programmed cell death 1 (PD 1) protein on the surface of T lymphocytes is activated by the Programmed cell death ligand 1 (PD-L1) protein on the cancer cell surface. PD- L1 is thought to form a pathway that results in suppression of antitumor responses when activated. Patients with breast cancer (BC) who underwent resection without neoadjuvant chemotherapy between 2010 and 2020 were included in this study. Of the 302 BCs examined, 21 constitute the group with TNBC. In our study, the mean age of the Triple positive breast cancer (TPBC) and TNBC groups was similar (55.67 ± 12.61 vs. 53.23 ± 8.21, p = 0.384). There was no significant correlation between TPBC and TNBC and tumor size, lymph node, histological grade, and PD-L1 positivity in the center of the tumor (all p-value >.05). It was observed that tumor stage was higher in patients with TNBC than in patients with TPBC (19 % vs. 1.1 %, p = .002). The Ki 67 proliferation index was found to be higher in patients with TNBC than in patients with TPBC (90.5 % vs. 41.8 %, p .001). Although not statistically significant, clinically, CD 3 and CD 8 immune scores with high tumor margin were higher in patients with TNBC than in patients with TPBC (90.4 % vs, 9.6 % and 85.7 % vs. 14.3 %, respectively). Positive expression of PD-L1 at the tumor margin was significantly higher in patients with TNBC than patients with TPBC (20.3 % vs, 52.4 %, p = .002). By Kaplan-Meier analysis, the survival distribution of CD 3 and CD 8 immunoscore, tumor central and margin PD-L1 values were compared. Mean follow-up was 136.18 months (range, 1 - 144 months); and the 10-year Overall Survival (OS) estimate for the population was 90.9 % (95 % CI, 85.5 - 96.7). In this study, this difference was not statistically significant according to the log-rank test. In this study, we aimed to evaluate the relationship between CD 3, CD 8 T lymphocyte immune score and PD-L1 expression at the tumor center and margin in TNBC, the prognostic value and clinicopathological significance of this relationship.
Collapse
Affiliation(s)
- Ceyhan Uğurluoğlu
- Department of Patology, Faculty of Medical, Selçuk University, Konya, Turkey.
| | - Serdar Yormaz
- Department of General Surgery, Faculty of Medical, Selçuk University, Konya, Turkey
| |
Collapse
|
6
|
van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R, van Deurzen CHM. Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. Int J Mol Sci 2023; 24:ijms24032969. [PMID: 36769287 PMCID: PMC9918290 DOI: 10.3390/ijms24032969] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Around 40-50% of all triple-negative breast cancer (TNBC) patients achieve a pathological complete response (pCR) after treatment with neoadjuvant chemotherapy (NAC). The identification of biomarkers predicting the response to NAC could be helpful for personalized treatment. This systematic review provides an overview of putative biomarkers at baseline that are predictive for a pCR following NAC. Embase, Medline and Web of Science were searched for articles published between January 2010 and August 2022. The articles had to meet the following criteria: patients with primary invasive TNBC without distant metastases and patients must have received NAC. In total, 2045 articles were screened by two reviewers resulting in the inclusion of 92 articles. Overall, the most frequently reported biomarkers associated with a pCR were a high expression of Ki-67, an expression of PD-L1 and the abundance of tumor-infiltrating lymphocytes, particularly CD8+ T cells, and corresponding immune gene signatures. In addition, our review reveals proteomic, genomic and transcriptomic markers that relate to cancer cells, the tumor microenvironment and the peripheral blood, which also affect chemo-sensitivity. We conclude that a prediction model based on a combination of tumor and immune markers is likely to better stratify TNBC patients with respect to NAC response.
Collapse
Affiliation(s)
- Nadine S. van den Ende
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-640213383
| | - Anh H. Nguyen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Chu J, Yeo MK, Lee SH, Lee MY, Chae SW, Kim HS, DO SI. Clinicopathological and Prognostic Significance of Programmed Death Ligand-1 SP142 Expression in 132 Patients With Triple-negative Breast Cancer. In Vivo 2022; 36:2890-2898. [PMID: 36309362 PMCID: PMC9677758 DOI: 10.21873/invivo.13030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND/AIM The prognostic value of programmed death ligand-1 (PD-L1) expression in triple-negative breast cancer (TNBC) has not been sufficiently investigated. In this study, we examined whether PD-L1 expression status is associated with clinicopathological features and outcomes of patients with TNBC. PATIENTS AND METHODS Immunostaining for PD-L1 SP142 was performed on tissue microarrays containing 132 TNBC samples. High PD-L1 expression was defined as ≥10% of the tumor area occupied by PD-L1-expressing cells. RESULTS Thirty-five (26.5%) patients showed high PD-L1 SP142 expression on immune cells (ICs). High IC PD-L1 expression was significantly correlated with smaller tumor size (p=0.030), absence of lymphovascular invasion (p=0.024), and fewer lymph node metastases (p=0.002). Multivariate survival analysis revealed that high IC PD-L1 expression independently predicted better disease-free survival (DFS) of TNBC patients. CONCLUSION High PD-L1 SP142 expression on ICs was significantly associated with favorable clinicopathological parameters and better outcomes in patients with TNBC. Our observations suggest that high IC PD-L1 expression can be used as an independent prognostic marker for predicting better DFS in patients with TNBC.
Collapse
Affiliation(s)
- Jinah Chu
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sang Hwa Lee
- Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Im DO
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
8
|
Azim HA, Shohdy KS, Elghazawy H, Salib MM, Almeldin D, Kassem L. Programmed death-ligand 1 (PD-L1) expression predicts response to neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Biomarkers 2022; 27:764-772. [PMID: 35980714 DOI: 10.1080/1354750x.2022.2112614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Background: In patients with metastatic triple-negative breast cancer (TNBC), PD-L1 expression has been demonstrated to predict response to immunotherapy. It is unclear whether PD-L1 expression measured with currently available validated assays can predict chemotherapy response in patients with non-metastatic TNBC.Methods: We conducted a systematic review and meta-analysis of clinical studies to assess the PD-L1 expression as a predictor of response to chemotherapy in non-metastatic TNBC using validated assays. The primary endpoint was pathological complete response (pCR) rate to neoadjuvant chemotherapy. Secondary endpoints included the prevalence of PD-L1 expression in non-metastatic TNBC and its impact on disease-free survival (DFS) and overall survival (OS). Moreover, RNA sequence data from the TCGA breast cancer cohort was used to define the relationship between PDCD1 and response to chemotherapy and prognosis.Results: Nineteen studies were eligible for the meta-analysis with a total of 2403 patients with non-metastatic TNBC disease. The PD-L1-positive cohort had a significantly higher likelihood of achieving pCR with neoadjuvant chemotherapy (pooled odds ratio =1.95; 95% CI= 1.39-2.73, p <0.0001). In studies which reported long-term outcomes, PD-L1 positivity was associated with significantly better DFS and OS compared to PD-L1 negative patients (pooled hazard ratio= 0.51; 95% CI= 0.35-0.74, p< 0.0001 and 0.51; 95% CI= 0.27-0.94, p = 0.031, respectively). Transcriptomic data suggested that PD-L1 expression is a surrogate marker for the upregulation of key immune-related genes that mediate response to chemotherapy in TNBC.Conclusion: This analysis clearly shows that patients with PD-L1 positive TNBC respond better to neoadjuvant chemotherapy and are associated with better survival outcomes compared to patients with PD-L1 negative tumors. The newly distinct quadruple negative breast cancer (QNBC) subtype should be defined as the BC subtype with the poorest outcome in the non-metastatic setting, highlighting the need for more aggressive therapy approaches.
Collapse
Affiliation(s)
- Hamdy A Azim
- Clinical Oncology Department, Cairo University, Cairo, Egypt
| | - Kyrillus S Shohdy
- Clinical Oncology Department, Cairo University, Cairo, Egypt.,Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, UK
| | - Hagar Elghazawy
- Clinical Oncology Department, Ain Shams University, Cairo, Egypt
| | - Monica M Salib
- Clinical Oncology Department, Cairo University, Cairo, Egypt
| | - Doaa Almeldin
- Clinical Oncology Department, Cairo University, Cairo, Egypt
| | - Loay Kassem
- Clinical Oncology Department, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Abou-Fadel J, Bhalli M, Grajeda B, Zhang J. CmP Signaling Network Leads to Identification of Prognostic Biomarkers for Triple-Negative Breast Cancer in Caucasian Women. Genet Test Mol Biomarkers 2022; 26:198-219. [PMID: 35481969 DOI: 10.1089/gtmb.2021.0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Triple-negative breast cancer (TNBC) constitutes ∼15% of all diagnosed invasive breast cancer cases with limited options for treatment since immunotherapies that target ER, PR, and HER2 receptors are ineffective. Progesterone (PRG) can induce its effects through either classic, nonclassic, or combined responses by binding to classic nuclear PRG receptors (nPRs) or nonclassic membrane PRG receptors (mPRs). Under PRG-induced actions, we previously demonstrated that the CCM signaling complex (CSC) can couple both nPRs and mPRs into a CmPn signaling network, which plays an important role during nPR(+) breast cancer tumorigenesis. We recently defined the novel CmP signaling network in African American women (AAW)-derived TNBC cells, which overlapped with our previously defined CmPn network in nPR(+) breast cancer cells. Methods: Under mPR-specific steroid actions, we measured alterations to key tumorigenic pathways in Caucasian American women (CAW)- derived TNBC cells, with RNAseq/proteomic and systems biology approaches. Exemption from ethics approval from IRB: This study only utilized cultured NBC cell lines with publicly available TNBC clinical data sets. Results: Our results demonstrated that TNBCs in CAW share similar altered signaling pathways, as TNBCs in AAW, under mPR-specific steroid actions, demonstrating the overall aggressive nature of TNBCs, regardless of racial differences. Furthermore, in this report, we have deconvoluted the CmP signalosome, using systems biology approaches and CAW-TNBC clinical data, to identify 21 new CAW-TNBC-specific prognostic biomarkers that reinforce the definitive role of CSC and mPR signaling during CAW-TNBC tumorigenesis. Conclusion: This new set of potential prognostic biomarkers may revolutionize molecular mechanisms and currently known concepts of tumorigenesis in CAW-TNBCs, leading to hopeful new therapeutic strategies.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| |
Collapse
|
10
|
Núñez Abad M, Calabuig-Fariñas S, Lobo de Mena M, Torres-Martínez S, García González C, García García JÁ, Iranzo González-Cruz V, Camps Herrero C. Programmed Death-Ligand 1 (PD-L1) as Immunotherapy Biomarker in Breast Cancer. Cancers (Basel) 2022; 14:307. [PMID: 35053471 PMCID: PMC8773553 DOI: 10.3390/cancers14020307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer constitutes the most common malignant neoplasm in women around the world. Approximately 12% of patients are diagnosed with metastatic stage, and between 5 and 30% of early or locally advanced BC patients will relapse, making it an incurable disease. PD-L1 ligation is an immune inhibitory molecule of the activation of T cells, playing a relevant role in numerous types of malignant tumors, including BC. The objective of the present review is to analyze the role of PD-L1 as a biomarker in the different BC subtypes, adding clinical trials with immune checkpoint inhibitors and their applicable results. Diverse trials using immunotherapy with anti-PD-1/PD-L1 in BC, as well as prospective or retrospective cohort studies about PD-L1 in BC, were included. Despite divergent results in the reviewed studies, PD-L1 seems to be correlated with worse prognosis in the hormone receptor positive subtype. Immune checkpoints inhibitors targeting the PD-1/PD-L1 axis have achieved great response rates in TNBC patients, especially in combination with chemotherapy, making immunotherapy a new treatment option in this scenario. However, the utility of PD-L1 as a predictive biomarker in the rest of BC subtypes remains unclear. In addition, predictive differences have been found in response to immunotherapy depending on the stage of the tumor disease. Therefore, a better understanding of tumor microenvironment, as well as identifying new potential biomarkers or combined index scores, is necessary in order to make a better selection of the subgroups of BC patients who will derive benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Martín Núñez Abad
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.C.-F.); (S.T.-M.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Miriam Lobo de Mena
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
| | - Susana Torres-Martínez
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.C.-F.); (S.T.-M.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Clara García González
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
| | | | - Vega Iranzo González-Cruz
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Carlos Camps Herrero
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (M.L.d.M.); (C.G.G.); (C.C.H.)
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain; (S.C.-F.); (S.T.-M.)
- Unidad Mixta TRIAL, Centro Investigación Príncipe Felipe-Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|