1
|
Gauvin J, Huynh DN, Dubuc I, Lê C, Tugores R, Flamand N, Flamand L, Lubell WD, Ong H, Marleau S. Pharmacological targeting of the hyper-inflammatory response to SARS-CoV-2-infected K18-hACE2 mice using a cluster of differentiation 36 receptor modulator. Front Pharmacol 2024; 15:1303342. [PMID: 38384295 PMCID: PMC10879382 DOI: 10.3389/fphar.2024.1303342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The scientific and medical community faced an unprecedented global health hazard that led to nearly 7 million deaths attributable to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In spite of the development of efficient vaccines against SARS-CoV-2, many people remain at risk of developing severe symptoms as the virus continues to spread without beneficial patient therapy. The hyper-inflammatory response to SARS-CoV-2 infection progressing to acute respiratory distress syndrome remains an unmet medical need for improving patient care. The viral infection stimulates alveolar macrophages to adopt an inflammatory phenotype regulated, at least in part, by the cluster of differentiation 36 receptor (CD36) to produce unrestrained inflammatory cytokine secretions. We suggest herein that the modulation of the macrophage response using the synthetic CD36 ligand hexarelin offers potential as therapy for halting respiratory failure in SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Jade Gauvin
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - David N. Huynh
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Dubuc
- Department of Microbiology, Infectious Diseases and and Immunology, Université Laval, Québec, QC, Canada
| | - Catherine Lê
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Rafaela Tugores
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and and Immunology, Université Laval, Québec, QC, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Boccanegra B, Cappellari O, Mantuano P, Trisciuzzi D, Mele A, Tulimiero L, De Bellis M, Cirmi S, Sanarica F, Cerchiara AG, Conte E, Meanti R, Rizzi L, Bresciani E, Denoyelle S, Fehrentz JA, Cruciani G, Nicolotti O, Liantonio A, Torsello A, De Luca A. Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy. Front Immunol 2023; 14:1119888. [PMID: 37122711 PMCID: PMC10130389 DOI: 10.3389/fimmu.2023.1119888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Growth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD). Methods Here, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.). Results In vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-β1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD. Discussion Our results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Lisamaura Tulimiero
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Santa Cirmi
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesca Sanarica
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Elena Conte
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Orazio Nicolotti
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Annamaria De Luca
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
3
|
Meanti R, Licata M, Rizzi L, Bresciani E, Molteni L, Coco S, Locatelli V, Omeljaniuk RJ, Torsello A. Protective Effects of Hexarelin and JMV2894 in a Human Neuroblastoma Cell Line Expressing the SOD1-G93A Mutated Protein. Int J Mol Sci 2023; 24:ijms24020993. [PMID: 36674509 PMCID: PMC9863688 DOI: 10.3390/ijms24020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease whose etiology remains unresolved; nonetheless, mutations of superoxide dismutase 1 (SOD1) have been associated with several variants of ALS. Currently available pharmacologic interventions are only symptomatic and palliative in effect; therefore, there is a pressing demand for more effective drugs. This study examined potential therapeutic effects of growth hormone secretagogues (GHSs), a large family of synthetic compounds, as possible candidates for the treatment of ALS. Human neuroblastoma cells expressing the SOD1-G93A mutated protein (SH-SY5Y SOD1G93A cells) were incubated for 24 h with H2O2 (150 µM) in the absence, or presence, of GHS (1 µM), in order to study the protective effect of GHS against increased oxidative stress. The two GHSs examined in this study, hexarelin and JMV2894, protected cells from H2O2-induced cytotoxicity by activating molecules that regulate apoptosis and promote cell survival processes. These findings suggest the possibility of developing new GHS-based anti-oxidant and neuroprotective drugs with improved therapeutic potential. Further investigations are required for the following: (i) to clarify GHS molecular mechanisms of action, and (ii) to envisage the development of new GHSs that may be useful in ALS therapy.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Martina Licata
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8224
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| |
Collapse
|
4
|
Meanti R, Bresciani E, Rizzi L, Coco S, Zambelli V, Dimitroulas A, Molteni L, Omeljaniuk RJ, Locatelli V, Torsello A. Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:2376-2394. [PMID: 36111771 PMCID: PMC10616926 DOI: 10.2174/1570159x20666220915103613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Anna Dimitroulas
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, United Kingdom
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Robert J. Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
5
|
Zambelli V, Murphy EJ, Delvecchio P, Rizzi L, Fumagalli R, Rezoagli E, Bellani G. Treatment with levosimendan in an experimental model of early ventilator-induced diaphragmatic dysfunction. Drug Target Insights 2023; 17:39-44. [PMID: 37070031 PMCID: PMC10105369 DOI: 10.33393/dti.2023.2574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
Introduction Mechanical ventilation (MV) is a life-saving approach in critically ill patients. However, it may affect the diaphragmatic structure and function, beyond the lungs. Levosimendan is a calcium sensitizer widely used in clinics to improve cardiac contractility in acute heart failure patients. In vitro studies have demonstrated that levosimendan increased force-generating capacity of the diaphragm in chronic obstructive pulmonary disease patients. Thus the aim of this study was to evaluate the effects of levosimendan administration in an animal model of ventilator-induced diaphragmatic dysfunction (VIDD) on muscle contraction and diaphragm muscle cell viability. Methods Sprague-Dawley rats underwent prolonged MV (5 hours). VIDD+Levo group received a starting bolus of levosimendan immediately after intratracheal intubation and then an intravenous infusion of levosimendan throughout the study. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis and Western blot analysis. Healthy rats were used as the control. Results Levosimendan treatment maintained an adequate mean arterial pressure during the entire experimental protocol, preserved levels of autophagy-related proteins (LC3BI and LC3BII) and the muscular cell diameter demonstrated by histological analysis. Levosimendan did not affect the diaphragmatic contraction or the levels of proteins involved in the protein degradation (atrogin). Conclusions Our data suggest that levosimendan preserves muscular cell structure (cross-sectional area) and muscle autophagy after 5 hours of MV in a rat model of VIDD. However, levosimendan did not improve diaphragm contractile efficiency.
Collapse
Affiliation(s)
- Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
| | - Emma J Murphy
- LIFE - Health and Bioscience Research Institute, Midwest Campus, Technological University of the Shannon, Limerick - Ireland
| | - Paolo Delvecchio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
| | - Roberto Fumagalli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan - Italy
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza - Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza - Italy
| |
Collapse
|
6
|
Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, O'Neil E, Major I, Laffey JG, Rowan N. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom - A potential treatment for inflammatory lung conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152177. [PMID: 34875322 PMCID: PMC9752827 DOI: 10.1016/j.scitotenv.2021.152177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. β-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of β-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between β-glucan content in extracts isolated from seven mushroom species. The extracts with the highest β-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1β insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of β-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.
Collapse
Affiliation(s)
- Emma J Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Department of Graduate Studies, Limerick Institute of Technology, Limerick, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland; Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.
| | - Robert Pogue
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brazil
| | | | | | | | - Emer O'Neil
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|