1
|
Hajnal B, Pokorni AJ, Turbucz M, Bereczki F, Bartos M, Lazary A, Eltes PE. Clinical applications of 3D printing in spine surgery: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:454-471. [PMID: 39774918 DOI: 10.1007/s00586-024-08594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE The objective of this systematic review is to present a comprehensive summary of existing research on the use of 3D printing in spinal surgery. METHODS The researchers conducted a thorough search of four digital databases (PubMed, Web of Science, Scopus, and Embase) to identify relevant studies published between January 1999 and December 2022. The review focused on various aspects, including the types of objects printed, clinical applications, clinical outcomes, time and cost considerations, 3D printing materials, location of 3D printing, and technologies utilized. Out of the 1620 studies initially identified and the 17 added by manual search, 105 met the inclusion criteria for this review, collectively involving 2088 patients whose surgeries involved 3D printed objects. RESULTS The studies presented a variety of 3D printed devices, such as anatomical models, intraoperative navigational templates, and customized implants. The most widely used type of objects are drill guides (53%) and anatomical models (25%) which can also be used for simulating the surgery. Custom made implants are much less frequently used (16% of papers). These devices significantly improved clinical outcomes, particularly enhancing the accuracy of pedicle screw placement. Most studies (88%) reported reduced operation times, although two noted longer times due to procedural complexities. A variety of 3DP technologies and materials were used, with STL, FDM, and SLS common for models and guides, and titanium for implants via EBM, SLM, and DMLS. Materialise software (Mimics, 3-Matic, Magics) was frequently utilized. While most studies mentioned outsourced production, in-house printing was implied in several cases, indicating a trend towards localized 3D printing in spine surgery. CONCLUSIONS 3D printing in spine surgery, a rapidly growing area of research, is predominantly used for creating drill guides for screw insertion, anatomical models, and innovative implants, enhancing clinical outcomes and reducing operative time. While cost-efficiency remains uncertain due to insufficient data, some 3D printing applications, like pedicle screw drill guides, are already widely accepted and routinely used in hospitals.
Collapse
Affiliation(s)
- Benjamin Hajnal
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Agoston Jakab Pokorni
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Mate Turbucz
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Ferenc Bereczki
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Marton Bartos
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Aron Lazary
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Üllői St. 26, Budapest, 1085, Hungary
| | - Peter Endre Eltes
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary.
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Üllői St. 26, Budapest, 1085, Hungary.
| |
Collapse
|
2
|
Patel A, Dada A, Saggi S, Yamada H, Ambati VS, Goldstein E, Hsiao EC, Mummaneni PV. Personalized Approaches to Spine Surgery. Int J Spine Surg 2024; 18:8644. [PMID: 39191475 PMCID: PMC11687043 DOI: 10.14444/8644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Patient-centric decision-making has imbued all aspects of health care, including spine surgery. This review describes how spine surgeons can use evolving technologies and knowledge of disease and pain states to tailor their surgical approach to the individual patient. This includes preoperative screening for and optimization of low bone mineral density, intraoperative selection of implant material and customization of interbody cages and screws, and postoperative personalization of pain regimens and rehabilitation courses. By working in a multidisciplinary fashion, spine surgeons can avail themselves of these advances to provide individualized care.
Collapse
Affiliation(s)
- Arati Patel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Satvir Saggi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hunter Yamada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Vardhaan S Ambati
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Elianna Goldstein
- Department of Radiology and Biomedical Imaging, Neuroradiology Division, University of California San Francisco, San Francisco, CA, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, The UCSF Metabolic Bone Clinic, University of California San Francisco, San Francisco, CA, USA
| | - Praveen V Mummaneni
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Regmi M, Liu W, Liu S, Dai Y, Xiong Y, Yang J, Yang C. The evolution and integration of technology in spinal neurosurgery: A scoping review. J Clin Neurosci 2024; 129:110853. [PMID: 39348790 DOI: 10.1016/j.jocn.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Spinal disorders pose a significant global health challenge, affecting nearly 5% of the population and incurring substantial socioeconomic costs. Over time, spinal neurosurgery has evolved from basic 19th-century techniques to today's minimally invasive procedures. The recent integration of technologies such as robotic assistance and advanced imaging has not only improved precision but also reshaped treatment paradigms. This review explores key innovations in imaging, biomaterials, and emerging fields such as AI, examining how they address long-standing challenges in spinal care, including enhancing surgical accuracy and promoting tissue regeneration. Are we at the threshold of a new era in healthcare technology, or are these innovations merely enhancements that may not fundamentally advance clinical care? We aim to answer this question by offering a concise introduction to each technology and discussing in depth its status and challenges, providing readers with a clearer understanding of its actual potential to revolutionize surgical practices.
Collapse
Affiliation(s)
- Moksada Regmi
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Peking University Health Science Center, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China
| | - Weihai Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Shikun Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuwei Dai
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Ying Xiong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jun Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Chenlong Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China.
| |
Collapse
|
4
|
Lewandrowski KU, Vira S, Elfar JC, Lorio MP. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J Pers Med 2024; 14:809. [PMID: 39202002 PMCID: PMC11355268 DOI: 10.3390/jpm14080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
3D-printing technology has revolutionized spinal implant manufacturing, particularly in developing personalized and custom-fit titanium interbody fusion cages. These cages are pivotal in supporting inter-vertebral stability, promoting bone growth, and restoring spinal alignment. This article reviews the latest advancements in 3D-printed titanium interbody fusion cages, emphasizing their relevance in modern personalized surgical spine care protocols applied to common clinical scenarios. Furthermore, the authors review the various printing and post-printing processing technologies and discuss how engineering and design are deployed to tailor each type of implant to its patient-specific clinical application, highlighting how anatomical and biomechanical considerations impact their development and manufacturing processes to achieve optimum osteoinductive and osteoconductive properties. The article further examines the benefits of 3D printing, such as customizable geometry and porosity, that enhance osteointegration and mechanical compatibility, offering a leap forward in patient-specific solutions. The comparative analysis provided by the authors underscores the unique challenges and solutions in designing cervical, and lumbar spine implants, including load-bearing requirements and bioactivity with surrounding bony tissue to promote cell attachment. Additionally, the authors discuss the clinical outcomes associated with these implants, including the implications of improvements in surgical precision on patient outcomes. Lastly, they address strategies to overcome implementation challenges in healthcare facilities, which often resist new technology acquisitions due to perceived cost overruns and preconceived notions that hinder potential savings by providing customized surgical implants with the potential for lower complication and revision rates. This comprehensive review aims to provide insights into how modern 3D-printed titanium interbody fusion cages are made, explain quality standards, and how they may impact personalized surgical spine care.
Collapse
Affiliation(s)
- Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, Division Personalized Pain Research and Education, Tucson, AZ 85712, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas Bogotá, Bogotá 111321, Colombia
| | - Shaleen Vira
- Orthopedic and Sports Medicine Institute, Banner-University Tucson Campus, 755 East McDowell Road, Floor 2, Phoenix, AZ 85006, USA;
| | - John C. Elfar
- Department of Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Morgan P. Lorio
- Advanced Orthopedics, 499 East Central Parkway, Altamonte Springs, FL 32701, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
5
|
Pholprajug P, Kotheeranurak V, Liu Y, Kim JS. The Endoscopic Lumbar Interbody Fusion: A Narrative Review, and Future Perspective. Neurospine 2023; 20:1224-1245. [PMID: 38171291 PMCID: PMC10762387 DOI: 10.14245/ns.2346888.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Lumbar interbody fusion stands as a preferred surgical solution for degenerative lumbar spine diseases. The procedure primarily aims to establish lumbar segment stability, directly addressing patient symptoms associated with spinal complications. Traditional open surgery, though effective, is linked with notable morbidities and extended recovery time. To mitigate these concerns, minimally invasive surgery (MIS) has garnered significant popularity, presenting an appealing alternative with numerous benefits such as reduced soft tissue trauma, decreased blood loss, and expedited recovery. Among MIS procedures, full endoscopic spinal surgery, characterized by its minimal invasiveness, holds the potential to further minimize morbidities while enhancing surgical outcomes. Endoscopic lumbar interbody fusion, a novel procedure within this paradigm, has gained attention for offering advantages comparable to those of minimally invasive transforaminal lumbar interbody fusion. However, the safety, efficacy, and associated surgical techniques and instrument design of this method continue to be subjects of ongoing debate. This paper critically reviews current evidence on the safety, efficacy, and advantages of endoscopic lumbar spinal interbody fusion, examining whether it could indeed supersede existing mainstream techniques.
Collapse
Affiliation(s)
| | - Vit Kotheeranurak
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yanting Liu
- Spine Center, Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-Sung Kim
- Spine Center, Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
7
|
Ruiz-Cardozo MA, Trevino G, Pando A, Brehm S, Olufawo M, Barot K, Carey-Ewend A, Yahanda AT, Perdomo-Pantoja A, Jauregui JJ, Cadieux M, Costa M, Coenen J, Dorward I, Anolik RA, Sacks JM, Molina CA. Rapid Implementation of a 3-Dimensional-Printed Patient-Specific Titanium Sacrum Implant for Severe Neuropathic Spinal Arthropathy and Guide to Compassionate US Regulatory Approval. Oper Neurosurg (Hagerstown) 2023; 25:469-477. [PMID: 37584482 DOI: 10.1227/ons.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/31/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Rapid design and production of patient-specific 3-dimensional-printed implants (3DPIs) present a novel opportunity to restore the biomechanically demanding integrity of the lumbopelvic junction. We present a unique case of a 61-year-old patient with severe neuropathic spinal arthropathy (Charcot spine) who initially underwent a T4-to-sacrum spinal fusion. Massive bone destruction led to dissociation of his upper body from his pelvis and legs. Reconstruction of the spinopelvic continuity was planned with the aid of a personalized lumbosacral 3DPI. METHOD Using high-resolution computed tomography scans, the custom 3DPI was made using additive titanium manufacturing. The unique 3DPI consisted of (1) a sacral platform with iliac screws, (2) modular corpectomy device with rigid connection to the sacral platform, and (3) anterior plate connection with screws for proximal fixation. The procedures to obtain compassionate use Food and Drug Administration approval were followed. The patient underwent debridement of a chronically open wound before undertaking the 3-stage reconstructive procedure. The custom 3DPI and additional instrumentation were inserted as part of a salvage rebuilding procedure. RESULTS The chronology of the rapid implementation of the personalized sacral 3DPI from decision, design, manufacturing, Food and Drug Administration approval, and surgical execution lasted 28 days. The prosthesis was positioned in the defect according to the expected anatomic planes and secured using a screw-rod system and a vascularized fibular bone strut graft. The prosthesis provided an ideal repair of the lumbosacral junction and pelvic ring by merging spinal pelvic fixation, posterior pelvic ring fixation, and anterior spinal column fixation. CONCLUSION To the best of our knowledge, this is the first case of a multilevel lumbar, sacral, and sacropelvic neuropathic (Charcot) spine reconstruction using a 3DPI sacral prosthesis. As the prevalence of severe spine deformities continues to increase, adoption of 3DPIs is becoming more relevant to offer personalized treatment for complex deformities.
Collapse
Affiliation(s)
- Miguel A Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alejandro Pando
- Department of Neurological Surgery, Rutgers New Jersey Medical School, New Jersey, New Jersey, USA
| | - Samuel Brehm
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Abigail Carey-Ewend
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alexander T Yahanda
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alexander Perdomo-Pantoja
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julio J Jauregui
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Magalie Cadieux
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Megan Costa
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie Coenen
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ian Dorward
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rachel A Anolik
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Justin M Sacks
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Camilo A Molina
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Öztürk Y, Ayazoğlu M, Öztürk Ç, Arabacı A, Solak N, Özsoy S. A new patient-specific overformed anatomical implant design method to reconstruct dysplastic femur trochlea. Sci Rep 2023; 13:3204. [PMID: 36828989 PMCID: PMC9958018 DOI: 10.1038/s41598-023-30341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Patellar luxation with condylar defect is a challenging situation for reconstruction in humans. Patella reluxation, cartilage damage and pain are the most common complications. This study aims to present a new patient specific method of overformed implant design and clinical implantation that prevents luxation of patella without damaging the cartilage in a dog. Design processes are Computer Tomography, Computer Assisted Design, rapid prototyping of the bone replica, creation of the implant with surgeon's haptic knowledge on the bone replica, 3D printing of the implant and clinical application. The implant was fully seated on the bone. Patella reluxation or implant-related bone problem was not observed 80 days after the operation. However, before the implant application, there were soft tissue problems due to previous surgeries. Three-point bending test and finite element analysis were performed to determine the biomechanical safety of the implant. The stress acting on the implant was below the biomechanical limits of the implant. More cases with long-term follow-up are needed to confirm the success of this method in patellar luxation. Compared with trochlear sulcoplasty and total knee replacement, there was no cartilage damage done by surgeons with this method, and the implant keeps the patella functionally in sulcus. This is a promising multidisciplinary method that can be applied to any part of the bone and can solve some orthopaedic problems with surgeon's haptic knowledge.
Collapse
Affiliation(s)
- Yetkin Öztürk
- Molecular Biology and Genetics Department, Science and Literature Faculty, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Murat Ayazoğlu
- grid.10516.330000 0001 2174 543XFaculty of Manufacturing Engineering, Istanbul Technical University, Gumussuyu, 34437 Istanbul, Turkey
| | - Çağrı Öztürk
- grid.10516.330000 0001 2174 543XMetallurgical and Materials Engineering Department, Chemical, and Metallurgical Engineering Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Atakan Arabacı
- grid.10516.330000 0001 2174 543XMetallurgical and Materials Engineering Department, Chemical, and Metallurgical Engineering Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Nuri Solak
- grid.10516.330000 0001 2174 543XMetallurgical and Materials Engineering Department, Chemical, and Metallurgical Engineering Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Serhat Özsoy
- grid.506076.20000 0004 1797 5496Surgery Department, Veterinary Faculty, Istanbul University-Cerrahpasa, Buyukcekmece, 34500 Istanbul, Turkey
| |
Collapse
|
9
|
Lin GX, Chen CM, Rui G, Hu BS. Research relating to three-dimensional (3D) printing in spine surgery: a bibliometric analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:395-407. [PMID: 36109389 DOI: 10.1007/s00586-022-07376-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Although numerous publications on three-dimensional printing (3DP) in spine surgery have been published, bibliometric analysis studies are scarce. Thus, this study aimed to present a bibliometric analysis of the status, hot spots, and frontiers of 3DP in spine surgery and associated research disciplines. METHODS All publications relating to the utilization of 3DP in spine surgery from 1999 to May 9, 2022, were retrieved from the Web of Science. The bibliometric analysis was performed using CiteSpace software, and information on the country, institution, author, journal, and keywords for each publication was collected. RESULTS A total of 270 articles were identified. From 2016 onward, a significant increase in publications on spinal surgery was observed. China was the most productive and influential country (98 publications) and H-index (22), followed by the USA and Australia. The most productive institution was Capital Medical University (9 publications). P. S. D'urso (8 publications, 46 citations) and R. J. Mobbs (8 publications, 39 citations) were the most prolific authors. European Spine Journal contributed the highest number of publications. The eight main clusters were: "rapid prototyping" #0, "3D printed" #1, "spine fusion" #2, "scoliosis" #3, "spine surgery" #4, "patient-specific" #5, "nervous system" #6, and "neuronavigation" #7. The strongest keyword bursts in 3DP in spine surgery were "fixation," "drill template," "instrumentation," "fusion," "complication," and "atlantoaxial instability." CONCLUSION This analysis provides information on research trends and frontiers in the application of 3DP in spine surgery, as well as research and collaboration partners, institutions, and countries.
Collapse
Affiliation(s)
- Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan.,College of nursing and health sciences, Dayeh University, Changhua, Taiwan
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Bao-Shan Hu
- The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Park CK. 3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training. J Korean Neurosurg Soc 2022; 65:489-498. [PMID: 35762226 PMCID: PMC9271812 DOI: 10.3340/jkns.2021.0235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.
Collapse
Affiliation(s)
- Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Kwon SW, Chung CK, Won YI, Yuh WT, Park SB, Yang SH, Lee CH, Rhee JM, Kim KT, Kim CH. Mechanical Failure After Total En Bloc Spondylectomy and Salvage Surgery. Neurospine 2022; 19:146-154. [PMID: 35378588 PMCID: PMC8987538 DOI: 10.14245/ns.2244092.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Total en bloc spondylectomy (TES) is a curative surgical method for spinal tumors. After resecting the 3 spinal columns, reconstruction is of paramount importance. We present cases of mechanical failure and suggest strategies for salvage surgery.
Methods The medical records of 19 patients who underwent TES (9 for primary tumors and 10 for metastatic tumors) were retrospectively reviewed. Previously reported surgical techniques were used, and the surgical extent was 1 level in 16 patients and 2 levels in 3 patients. A titanium-based mesh-type interbody spacer filled with autologous and cadaveric bone was used for anterior support, and a pedicle screw/rod system was used for posterior support. Radiotherapy was performed in 11 patients (pre-TES, 5; post-TES, 6). They were followed up for 59 ± 38 months (range, 11–133 months).
Results During follow-up, 8 of 9 primary tumor patients (89%) and 5 of 10 metastatic tumor patients (50%) survived (mean survival time, 124 ± 8 months vs. 51 ± 13 months; p=0.11). Mechanical failure occurred in 3 patients (33%) with primary tumors and 2 patients (20%) with metastatic tumors (p=0.63). The mechanical failure-free time was 94.4 ± 14 months (primary tumors, 95 ± 18 months; metastatic tumors, 68 ± 16 months; p=0.90). Revision surgery was performed in 4 of 5 patients, and bilateral broken rods were replaced with dual cobalt-chromium alloy rods. Repeated rod fractures occurred in 1 of 4 patients 2 years later, and the third operation (with multiple cobalt-chromium alloy rods) was successful for over 6 years.
Conclusion Considering the difficulty of reoperation and patients’ suffering, preemptive use of a multiple-rod system may be advisable.
Collapse
Affiliation(s)
- Shin Won Kwon
- Department of Neurosurgery, Incheon Veterans Hospital, Incheon, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Young Il Won
- Department of Neurosurgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Woon Tak Yuh
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sung Bae Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Seoul National University Boramae Hospital, Boramae Medical Center, Seoul, Korea
| | - Seung Heon Yang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang Hyun Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - John M. Rhee
- Department of Orthopaedic Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, Korea
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Corresponding Author Chi Heon Kim https://orcid.org/0000-0003-0497-1130 Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|