1
|
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells 2023; 12:cells12091294. [PMID: 37174694 PMCID: PMC10177508 DOI: 10.3390/cells12091294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a debilitating ocular surface disease that eventuates from a depleted or dysfunctional limbal epithelial stem cell (LESC) pool, resulting in corneal epithelial failure and blindness. The leading cause of LSCD is a chemical burn, with alkali substances being the most common inciting agents. Characteristic features of alkali-induced LSCD include corneal conjunctivalization, inflammation, neovascularization and fibrosis. Over the past decades, animal models of corneal alkali burn and alkali-induced LSCD have been instrumental in improving our understanding of the pathophysiological mechanisms responsible for disease development. Through these paradigms, important insights have been gained with regards to signaling pathways that drive inflammation, neovascularization and fibrosis, including NF-κB, ERK, p38 MAPK, JNK, STAT3, PI3K/AKT, mTOR and WNT/β-catenin cascades. Nonetheless, the molecular and cellular events that underpin re-epithelialization and those that govern long-term epithelial behavior are poorly understood. This review provides an overview of the current mechanistic insights into the pathophysiology of alkali-induced LSCD. Moreover, we highlight limitations regarding existing animal models and knowledge gaps which, if addressed, would facilitate development of more efficacious therapeutic strategies for patients with alkali-induced LSCD.
Collapse
Affiliation(s)
- Lina Sprogyte
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
3
|
Kim DH, Im ST, Yoon JY, Kim S, Kim MK, Chung MH, Park CK. Comparison of therapeutic effects between topical 8-oxo-2'-deoxyguanosine and corticosteroid in ocular alkali burn model. Sci Rep 2021; 11:6909. [PMID: 33767351 PMCID: PMC7994716 DOI: 10.1038/s41598-021-86440-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 01/25/2023] Open
Abstract
We compared the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) and corticosteroid in a murine ocular alkali burn model. (n = 128) The corneal alkali burn model was established by applying 0.1 N sodium hydroxide (NaOH), followed by treatment with 8-oxo-dG, 0.1% fluorometholone (FML), 1% prednisolone acetate (PDE), or phosphate-buffered saline (PBS) twice daily. One week later, the clinical and histological status of the cornea were assessed. Transcript levels of inflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as well as the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the cornea, were assayed. The 8-oxo-dG and PDE groups showed marked improvements in corneal integrity and clarity when compared with the PBS group (each p < 0.01). The numbers of cells stained for neutrophil elastase and F4/80-positive inflammatory cells were significantly decreased, with levels of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, and total ROS/RNS amounts markedly reduced in the 8-oxo-dG, FML, and PDE groups (each p < 0.05). Levels of NADPH oxidase type 2 and 4 were substantially more repressed in the 8-oxo-dG-treated group than in the PDE-treated group (each p < 0.05). Topical 8-oxo-dG showed excellent therapeutic effects that were comparable with those treated with topical PDE in a murine ocular alkali burn model.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University College of Medicine, 1198, Guwol-dong, Namdong-Gu, Incheon, 21565, Korea.
| | - Sang-Taek Im
- Fight Against Angiogenesis Related Blindness (FARB) Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Jin Young Yoon
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | | | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Hee Chung
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, 21999, Korea.
| |
Collapse
|
4
|
Shahriary A, Sabzevari M, Jadidi K, Yazdani F, Aghamollaei H. The Role of Inflammatory Cytokines in Neovascularization of Chemical Ocular Injury. Ocul Immunol Inflamm 2021; 30:1149-1161. [PMID: 33734925 DOI: 10.1080/09273948.2020.1870148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: Chemical injuries can potentially lead to the necrosis anterior segment of the eye, and cornea in particular. Inflammatory cytokines are the first factors produced after chemical ocular injuries. Inflammation via promoting the angiogenesis factor tries to implement the wound healing mechanism in the epithelial and stromal layer of the cornea. Methods: Narrative review.Results: In our review, we described the patterns of chemical injuries in the cornea and their molecular mechanisms associated with the expression of inflammatory cytokines. Moreover, the effects of inflammation signals on angiogenesis factors and CNV were explained. Conclusion: The contribution of inflammation and angiogenesis causes de novo formation of blood vessels that is known as the corneal neovascularization (CNV). The new vascularity interrupts cornea clarity and visual acuity. Inflammation also depleted the Limbal stem cells (LSCs) in the limbus causing the failure of normal corneal epithelial healing and conjunctivalization of the cornea.
Collapse
Affiliation(s)
- Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Sabzevari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Farshad Yazdani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Galindo S, de la Mata A, López-Paniagua M, Herreras JM, Pérez I, Calonge M, Nieto-Miguel T. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art. Stem Cell Res Ther 2021; 12:60. [PMID: 33441175 PMCID: PMC7805216 DOI: 10.1186/s13287-020-02129-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have unique and beneficial properties and are currently used to treat a broad variety of diseases. These properties include the potential for differentiation into other cell types, secretion of different trophic factors that promote a regenerative microenvironment, anti-inflammatory actions, selective migration to damaged tissues, and non-immunogenicity. MSCs are effective for the treatment of ocular surface diseases such as dry eye, corneal burns, and limbal stem cell deficiency (LSCD), both in experimental models and in humans. LSCD is a pathological condition in which damage occurs to the limbal epithelial stem cells, or their niche, that are responsible for the continuous regeneration of the corneal epithelium. If LSCD is extensive and/or severe, it usually causes corneal epithelial defects, ulceration, and conjunctival overgrowth of the cornea. These changes can result in neovascularization and corneal opacity, severe inflammation, pain, and visual loss. The effectiveness of MSCs to reduce corneal opacity, neovascularization, and inflammation has been widely studied in different experimental models of LSCD and in some clinical trials; however, the methodological disparity used in the different studies makes it hard to compare outcomes among them. In this regard, the MSC route of administration used to treat LSCD and other ocular surface diseases is an important factor. It should be efficient, minimally invasive, and safe. So far, intravenous and intraperitoneal injections, topical administration, and MSC transplantation using carrier substrata like amniotic membrane (AM), fibrin, or synthetic biopolymers have been the most commonly used administration routes in experimental models. However, systemic administration carries the risk of potential side effects and transplantation requires surgical procedures that could complicate the process. Alternatively, subconjunctival injection is a minimally invasive and straightforward technique frequently used in ophthalmology. It enables performance of local treatments using high cell doses. In this review, we provide an overview of the current status of MSC administration by subconjunctival injection, analyzing the convenience, safety, and efficacy for treatment of corneal failure due to LSCD in different experimental models. We also provide a summary of the clinical trials that have been completed, are in progress, or being planned.
Collapse
Affiliation(s)
- Sara Galindo
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Ana de la Mata
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Jose M Herreras
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Inmaculada Pérez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Margarita Calonge
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Teresa Nieto-Miguel
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Edificio IOBA, Campus Miguel Delibes, Paseo de Belén 17, 47011, Valladolid, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| |
Collapse
|
6
|
Al-Jaibaji O, Swioklo S, Connon CJ. Mesenchymal stromal cells for ocular surface repair. Expert Opin Biol Ther 2019; 19:643-653. [PMID: 30979344 DOI: 10.1080/14712598.2019.1607836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cornea is a transparent, robust tissue that comprises highly organized cells. Disruption of this specialized tissue can lead to scarring and subsequent blindness, making corneal damage a considerable challenge worldwide. At present, the available medical treatments are unable to address the wide range of corneal diseases. Mesenchymal stem cells (MSCs) have increasingly been investigated for their regenerative effect on ocular surface injury due to their unique ability for growth factor production, anti-inflammatory activity, immunomodulatory capacity and differentiation into multiple cell lineages. AREAS COVERED Within this review, we explore the pathogenesis of corneal disorders in response to injury and disease, and the potential for MSCs to modulate this process as a treatment. Through the review of over 25 animal studies, we investigate the common mechanisms of action by which MSCs have their effect and discuss their potential for treating and/or preventing corneal deterioration EXPERT OPINION Depending on the environmental cues, MSCs can exert a potent effect on corneal wound healing through reducing opacity and vascularization, whilst promoting re-epithelialization. Whilst their mechanism is multifactorial, it seems clear that the anti-inflammatory/immunomodulatory factors they produce in response to damage are key to their control of cellular milieu and improving healing outcomes.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| | - Stephen Swioklo
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| | - Che J Connon
- a Institute of Genetic Medicine , Newcastle University, International Centre for Life , Newcastle upon Tyne , UK
| |
Collapse
|
7
|
Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, Martín García E, Sánchez-Guijo F, Argüeso P, Aijón J, Hernández-Galilea E, Velasco A. Subconjunctival injection of mesenchymal stromal cells protects the cornea in an experimental model of GVHD. Ocul Surf 2019; 17:285-294. [PMID: 30630121 DOI: 10.1016/j.jtos.2019.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate the therapeutic effect of subconjunctival injection of human mesenchymal stromal cells (hMSCs) in the cornea of mice with graft versus host disease (GVHD). METHODS GVHD was induced in mice after hematopoietic stem cell transplantation (HSCT) between MHC-mismatched mouse strains. Subconjunctival injection of hMSCs was applied at day 10 post-HSCT. Infiltration of CD3+ cells in the cornea and epithelial alterations were analyzed by immunofluorescence. Tear was assessed using the PRT test and TearLab Osmolarity System. qPCR was used to evaluate changes in cytokines, Pax6 and Sprr1b expression. To evaluate the effect of irradiation, we analyzed the expression of these genes in TBI mice. RESULTS Immune cell invasion occurs in mice with GVHD, as shown by the presence of CD3+ cells in the cornea. Interestingly, eyes treated with hMSC did not present CD3+ cells. Tear osmolarity was increased in GVHD eyes, but not in treated eyes. TNFa expression was highly increased in all corneas except in Control and treated eyes. Pax6 in corneal epithelium showed a similar pattern in GVHD and Control mice, and its gene expression was enhanced in GVHD corneas. In contrast, Pax6 was reduced in GVHD + MSC corneas. We also found an increase in SPRR1B staining in GVHD eyes that was lower in GVHD + MSC mice, demonstrating that corneal keratinization is less frequent after treatment with hMSC. CONCLUSIONS The treatment with hMSCs by subconjunctival injection is effective in reducing corneal inflammation and squamous metaplasia in ocular GVHD (oGVHD). Local treatment with hMSCs is a promising strategy for oGVHD.
Collapse
Affiliation(s)
- Rafael Martínez-Carrasco
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Department Cell Biology & Pathology, University of Salamanca, Salamanca, 37007, Spain; INCyL, University of Salamanca, Salamanca, 37007, Spain.
| | - Luis Ignacio Sánchez-Abarca
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Department of Hematology, IBSAL-University Hospital of Salamanca, Salamanca, 37007, Spain; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Cristina Nieto-Gómez
- Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, 37007, Spain
| | - Elisabet Martín García
- Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, 37007, Spain
| | - Fermín Sánchez-Guijo
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Department of Hematology, IBSAL-University Hospital of Salamanca, Salamanca, 37007, Spain; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain; RETIC TerCel, y CIBERONC, Instituto de Salud Carlos III (ISCIII), Spain
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - José Aijón
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Department Cell Biology & Pathology, University of Salamanca, Salamanca, 37007, Spain; INCyL, University of Salamanca, Salamanca, 37007, Spain
| | - Emiliano Hernández-Galilea
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, 37007, Spain
| | - Almudena Velasco
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain; Department Cell Biology & Pathology, University of Salamanca, Salamanca, 37007, Spain; INCyL, University of Salamanca, Salamanca, 37007, Spain
| |
Collapse
|
8
|
Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. Int J Mol Sci 2017; 18:ijms18010208. [PMID: 28117680 PMCID: PMC5297838 DOI: 10.3390/ijms18010208] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.
Collapse
|
9
|
Baradaran-Rafii A, Eslani M, Haq Z, Shirzadeh E, Huvard MJ, Djalilian AR. Current and Upcoming Therapies for Ocular Surface Chemical Injuries. Ocul Surf 2016; 15:48-64. [PMID: 27650263 DOI: 10.1016/j.jtos.2016.09.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/11/2023]
Abstract
Chemical injuries frequently result in vision loss, disfigurement, and challenging ocular surface complications. Acute interventions are directed at decreasing the extent of the injury, suppressing inflammation, and promoting ocular surface re-epithelialization. Chronically, management involves controlling inflammation along with rehabilitation and reconstruction of the ocular surface. Future therapies aimed at inhibiting neovascularization and promoting ocular surface regeneration should provide more effective treatment options for the management of ocular chemical injuries.
Collapse
Affiliation(s)
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zeeshan Haq
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ebrahim Shirzadeh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael J Huvard
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Ghazaryan E, Zhang Y, He Y, Liu X, Li Y, Xie J, Su G. Mesenchymal stem cells in corneal neovascularization: Comparison of different application routes. Mol Med Rep 2016; 14:3104-12. [PMID: 27514011 PMCID: PMC5042785 DOI: 10.3892/mmr.2016.5621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present study is to investigate the effect of mesenchymal stem cells in corneal neovascularization and wound healing, and to compare the effectiveness of two possible application routes, subconjunctival injection and amniotic membrane transplantation. Chemical injury was induced by application of sodium hydroxide to the rats' corneas. After 7 days, the animals were divided into three groups. Different treatment methods were used for each group as follows: i) Group 1, injection of bone marrow-derived mesenchymal stem cells (BMSCs) under the conjunctiva; ii) group 2, transplantation of amniotic membranes, previously seeded with BMSCs; and iii) group 3, the untreated control group. The eyes were examined using a slit lamp on a weekly basis. After 4 weeks, the animals were sacrificed and corneas were removed for further examination. Corneal flat mounts were made following ink perfusion for improved vessel visualization, image capturing and quantitative evaluation. enzyme-linked immunosorbent assay was performed to detect the levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9). Reverse transcription-quantitative polymerase chain reaction was used for detection of VEGF-A, MMP-9, Toll-like receptor (TLR)2 and TLR4 gene expression levels. Cryosections were used for histological examination and immunostaining. Statistical analysis (Welch's one-way analysis of variance) demonstrated a significant difference between the groups [P≤0.05, confidence interval (CI) 95%]. The level of injury in group 1 was significantly different from groups 2 and 3. Measurement of the vessel area and VEGF gene expression levels had a similar difference among the groups (P≤0.05, CI 95%), however the differences for TLR2 and TLR4 were not statistically significant. BMSCs were previously transduced with the green fluorescent protein gene by lentivirus to track the movement of the cells following transplantation. The transplanted cells enhanced corneal wound healing by trophic factor production and immune-regulatory effect, rather than by direct transdifferentiation into corneal cells. The results of the current study demonstrated that BMSCs enhance corneal wound healing and decrease the area of neovascularization. Furthermore, the comparison of two application routes indicated that single subconjunctival injection appeared more effective than transplantation with amniotic membrane.
Collapse
Affiliation(s)
- Emma Ghazaryan
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Zhang
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuxi He
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Liu
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ying Li
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jianan Xie
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guanfang Su
- Department of Ophthalmology, Second Teaching Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
11
|
Feng X, Weng D, Zhou F, Owen YD, Qin H, Zhao J, WenYu, Huang Y, Chen J, Fu H, Yang N, Chen D, Li J, Tan R, Shen P. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization. EBioMedicine 2016; 9:61-76. [PMID: 27374313 PMCID: PMC4972579 DOI: 10.1016/j.ebiom.2016.06.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/04/2023] Open
Abstract
PPARγ has emerged as a master regulator of macrophage polarization and is the molecular target of the thiazolidinedione drugs. Here we show that apigenin binds and activates PPARγ by acting as a modulator. Activation of PPARγ by apigenin blocks p65 translocation into nuclei through inhibition of p65/PPARγ complex translocation into nuclei, thereby decreasing NF-κB activation and favoringM2 macrophage polarization. In HFD and ob/ob mice, apigenin significantly reverses M1 macrophage into M2 and reduces the infiltration of inflammatory cells in liver and adipose tissues, as well as decreases the levels of pro-inflammatory cytokines, thereby alleviating inflammation. Strikingly, apigenin reduces liver and muscular steatosis, decreases the levels of ALT, AST, TC and TG, improving glucose resistance obviously. Unlike rosiglitazone, apigenin does not cause significant weight gain, osteoporosis et al. Our findings identify apigenin as a modulator of PPARγ and a potential lead compound for treatment of metabolic disorders. Apigenin binds and activates PPARγ and significantly reverses the polarization of macrophages from M1 to M2 phenotype. Activation of PPARγ by apigenin blocks p65 translocation through inhibiting p65/PPARγ complex translocation into nucleus. Apigenin significantly attenuates metabolic inflammation and disorders without causing some side effects as TZD drugs do.
PPARγ is the molecular target of the thiazolidinedione drugs to treat type II diabetes. However, TZD drugs have some side effects including cardiovascular failure, liver toxicity, bone fractures and potential carcinogenesis, which have greatly limited their clinical use. Here, we find apigenin, a flavonoid molecule abundant in various fruits and vegetables, can control macrophage fate to inhibit inflammation and metabolic syndrome without causing some side effects as TZD drugs. Further study indicates that apigenin can target PPARγ with a range of beneficial effects and may represent a lead compound for developing new therapies against metabolic disorders.
Collapse
Affiliation(s)
- Xiujing Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Dan Weng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feifei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Young D Owen
- Graduate Medical Education, Virginia Mason Medical Center, Seattle, WA 98101, USA
| | - Haohan Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Jingfa Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - WenYu
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Yahong Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Jiajia Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Haijian Fu
- Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Dianhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Jianxin Li
- Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of life Sciences, Nanjing University, Nanjing 210046, China; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210046, China.
| |
Collapse
|
12
|
Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases. Stem Cells Int 2016; 2016:7961816. [PMID: 27110252 PMCID: PMC4823508 DOI: 10.1155/2016/7961816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.
Collapse
|