1
|
Ryals M, Morell RJ, Martin D, Boger ET, Wu P, Raible DW, Cunningham LL. The Inner Ear Heat Shock Transcriptional Signature Identifies Compounds That Protect Against Aminoglycoside Ototoxicity. Front Cell Neurosci 2018; 12:445. [PMID: 30532693 PMCID: PMC6265442 DOI: 10.3389/fncel.2018.00445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Mechanosensory hair cells of the inner ear transduce auditory and vestibular sensory input. Hair cells are susceptible to death from a variety of stressors, including treatment with therapeutic drugs that have ototoxic side effects. There is a need for co-therapies to mitigate drug-induced ototoxicity, and we showed previously that induction of heat shock proteins (HSPs) protects against hair cell death and hearing loss caused by aminoglycoside antibiotics in mouse. Here, we utilized the library of integrated cellular signatures (LINCS) to identify perturbagens that induce transcriptional profiles similar to that of heat shock. Massively parallel sequencing of RNA (RNA-Seq) of heat shocked and control mouse utricles provided a heat shock gene expression signature that was used in conjunction with LINCS to identify candidate perturbagens, several of which were known to protect the inner ear. Our data indicate that LINCS is a useful tool to screen for compounds that generate specific gene expression signatures in the inner ear. Forty-two LINCS-identified perturbagens were tested for otoprotection in zebrafish, and three of these were protective. These compounds also induced the heat shock gene expression signature in mouse utricles, and one compound protected against aminoglycoside-induced hair cell death in whole organ cultures of utricles from adult mice.
Collapse
Affiliation(s)
- Matthew Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Seattle, WA, United States
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Seattle, WA, United States.,Department of Biological Structure, University of Washington, Seattle, Seattle, WA, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Ma X, Liu Y, Muhammad W, Liu D, Wang J, Zhou H, Gao X, Qian X. Autophagy-related protein 12 associates with anti-apoptotic B cell lymphoma-2 to promote apoptosis in gentamicin-induced inner ear hair cell loss. Mol Med Rep 2017; 15:3819-3825. [PMID: 28440437 DOI: 10.3892/mmr.2017.6458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/15/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the underlying mechanisms of autophagy in a gentamicin (GM)-induced ototoxic model, and to establish whether the blocking of autophagy significantly increases the survival of inner ear hair cells. Cochleae were carefully dissected from four day‑old C57BL/6J mice and randomly divided into three groups prior to explant culture: Control (culture medium), GM‑treated (culture medium + GM) and GM + 3-methyladenine (3-MA; culture medium + GM + 3‑MA). Transmission electron microscopy, immunofluorescence and western blotting were performed to observe the expression of the autophagy protein microtubule‑associated protein 1A/B‑light chain 3 in explant cultures treated with GM and the autophagy inhibitor 3‑MA. Administration of GM in in vitro mouse cochlear culture induced apoptosis and the formation of autophagic vesicles and autophagosomes in hair cells. Notably, combined treatment with GM and 3‑MA to block autophagy significantly increased the survival of inner ear hair cells. Furthermore, it was indicated that the simultaneous expression and interaction of Atg12 with Bcl‑2 following GM treatment co‑integrated autophagy with apoptosis in the cochlea. The results of the present study demonstrated that autophagy was involved in GM-induced ototoxicity. Additionally, Atg12 may serve a protective role by binding to Bcl‑2. Therefore, Atg12 may be a potential therapeutic target for the treatment of GM-induced cochlear hair loss.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Otorhinolaryngology‑Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yongze Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Waqas Muhammad
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Dingding Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Junguo Wang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Han Zhou
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| | - Xia Gao
- Department of Otorhinolaryngology‑Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology‑Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
3
|
Lee JH, Oh SH, Kim TH, Go YY, Song JJ. Anti-apoptotic effect of dexamethasone in an ototoxicity model. Biomater Res 2017; 21:4. [PMID: 28405467 PMCID: PMC5383979 DOI: 10.1186/s40824-017-0090-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Dexamethasone (DEX) is used for the treatment of various inner ear diseases. However, the molecular mechanism of DEX on gentamicin induced hair cell damage is not known. Therefore, this study investigated the protective effect of DEX on gentamicin (GM)-induced ototoxicity and the effect of GM on the expression of apoptosis related genes. Methods The protective effects of DEX were measured by phalloidin staining of explant cultures of organ of Corti from postnatal day 2–3 mice with GM-induced hair cell loss. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect apoptosis and immunofluorescence was done to analyze the effect of DEX on the expression of apoptosis related genes. Results Cochlear explant cultures of postnatal day-4-old mice were exposed to 0, 1, 5, 10, 30, 50, and 100 μg/ml DEX and GM during culture. DEX protected from GM-induced hair cell loss in the inner ear of postnatal day 4 mice. To understand the molecular mechanisms by which DEX pre-treatment decreased hair cell loss, the testes of cochlear explant cultures of postnatal day 4 mice were examined for changes in expression of cochlear apoptosis mediators. The pro-apoptotic protein Bax was significantly down-regulated and numbers of apoptotic hair cells were decreased. Conclusions DEX has a protective effect on GM-induced hair cell loss in neonatal cochlea cultures and the protective mechanism may involve inhibition of the mitochondrial apoptosis pathway. The combination with scaffold technique can improve delivery of DEX into the inner ear to protect GM-induced ototoxicity.
Collapse
Affiliation(s)
- Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science & WCU Research Center, Dankook University, Cheonan, Korea
| | - Tae Ho Kim
- Department of Advanced Materials, Hannam University, Daejeon, Korea
| | - Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Wang J, Wang Y, Chen X, Zhang PZ, Shi ZT, Wen LT, Qiu JH, Chen FQ. Histone deacetylase inhibitor sodium butyrate attenuates gentamicin-induced hearing loss in vivo. Am J Otolaryngol 2015; 36:242-8. [PMID: 25554003 DOI: 10.1016/j.amjoto.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Although histone deacetylase (HDAC) inhibition has been shown to protect against gentamicin (GM)-induced hearing loss in vitro, its protective effect has not been proven in vivo. In the present study, the aim was to investigate the protective effect of sodium butyrate (NaB), a specific HDAC inhibitor, on GM-induced ototoxicity in vivo. METHODS Forty 8-week-old albino guinea pigs were divided into two experimental groups. Group 1 (n=10) underwent bilateral ear surgery to place sponges (0.3mm(3)) permeated with NaB (10μl, 100mg/ml) and physiological saline (10μl; control) in the right and left round window niches, respectively. The sponges were left in place for 15days to evaluate the effects of NaB at the applied concentration. Group 2 (n=30) underwent the same bilateral ear surgery described for Group 1, except three days after surgery, the animals received intramuscular GM injections (200mg/kg/day) for 5 consecutive days. Seven days after the final GM injection, the protective effects of NaB were examined. RESULTS After 15days of NaB treatment (10μl, 100mg/ml), an increase in histone acetylation was detected in Corti organ samples. Auditory brainstem response (ABR) threshold shifts and hair cell loss were also reduced in NaB-treated ears after GM administration. Furthermore, GM treatment increased HDAC1 expression in outer hair cells (OHCs) in vivo, and NaB blocked this action. CONCLUSION GM increases HDAC1 expression in OHCs, and NaB is able to block this action. Thus, it appears that the HDAC inhibitor, NaB, attenuates GM-induced hearing loss in guinea pigs.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China; Department of Otolaryngology-Head and Neck Surgery, Xi'an Children's Hospital, Shanxi, Xi'an, China
| | - Ye Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Xin Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Peng-zhi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Ze-tao Shi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Li-ting Wen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Jian-hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Fu-quan Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China.
| |
Collapse
|