1
|
Li HD, Chen SS, Ding J, Zhang CL, Qiu HY, Xia XX, Yang J, Wang XR. Exploration of ETV6::ABL1-positive AML with concurrent NPM1 and FLT3-ITD mutations. Ann Hematol 2024; 103:4295-4304. [PMID: 39105739 DOI: 10.1007/s00277-024-05917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
ETV6::ABL1 is a rare fusion gene that found in MPN, ALL, and AML. It has a complex and diverse formation mechanism due to the reciprocal orientations of the ETV6 and ABL1 genes relative to the centromeres. NPM1 is frequently mutated in adult AML, often accompanied by FLT3-ITD, which suggests molecular synergisms in AML pathogenesis. Previous reports on ETV6::ABL1 mostly focus on FLT3-ITD. In this study, we present a case of AML with ETV6::ABL1, along with NPM1 and FLT3-ITD. The patient showed a rapid increase in primitive cells at the initial stage, along with the presence of immature granulocytes and erythrocytes. Through cytogenetic analysis, fluorescence in situ hybridization (FISH), and RNA-seq, we elucidated the mechanism behind the formation of the ETV6::ABL1 fusion gene. Despite conventional chemotherapy failure and rapid tumor proliferation, we attempted to add FLT3 inhibitor sorafenib to the treatment, along with chemotherapy bridging to haploidentical transplantation. After haplo-HSCT, a combination of sorafenib and dasatinib was administered as maintenance therapy. The patient achieved complete remission (CR) and maintained it for 11 months. The intricate genetic landscape observed in this case presents diagnostic dilemmas and therapeutic challenges, emphasizing the importance of a comprehensive understanding of its implications for disease classification, risk stratification, and treatment selection.
Collapse
Affiliation(s)
- Hui-Dan Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Si-Si Chen
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Ding
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chun-Ling Zhang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hui-Yin Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin-Xin Xia
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Xiao-Rui Wang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
2
|
Lee HW, Park MS, Kim B, Jung CW, Kim HJ, Kim HY. ETV6::ABL1 fusion: from overlooked minor clone in myeloproliferative neoplasm to major player in leukemic transformation. Virchows Arch 2024; 485:735-741. [PMID: 39066837 PMCID: PMC11522125 DOI: 10.1007/s00428-024-03881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The ETV6::ABL1 fusion defines a subgroup of myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions. We report a case of extramedullary involvement and leukemic transformation in myeloproliferative neoplasm (MPN), where ETV6::ABL1 was initially overlooked but later detected in the blast phase. ETV6::ABL1 burden was very low during the MPN phase but increased substantially during the blast phase. This correlation between ETV6::ABL1 burden and disease phenotype indicated that an immature leukemic clone is the sole carrier of ETV6::ABL1, suggesting that ETV6::ABL1 is not the primary driver of the MPN phase. Moreover, only the blast phase revealed somatic mutations in RUNX1 and STAG2, or complex karyotype, while the MPN phase revealed no molecular and cytogenetic abnormalities. Therefore, it remains uncertain whether the small clone of ETV6::ABL1 influenced the manifestation of MPN or if another underlying driver was responsible for the MPN phase, necessitating further research.
Collapse
Affiliation(s)
- Hyun-Woo Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min-Seung Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Boram Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Chen F. ETV6::ABL1 positive myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) with blast crisis treated with flumatinib mesylate. Ann Hematol 2024; 103:3801-3804. [PMID: 38992279 DOI: 10.1007/s00277-024-05887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETV6::ABL1 fusion gene is a rare but recurrent genomic rearrangement in hematological malignancies with poor prognosis. Here, we report 1 case of Ph negative myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) who carry ETV6::ABL1 fusion gene. The patient achieved clinical remission after treatment with imatinib. However, disease progression of blast crisis was observed around 2 years later. The patient was treated with second-generation tyrosine kinase inhibitor of flumatinib, yielded a short term second therapeutic response. ETV6::ABL1 positive myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) is rare and may be misdiagnosed by conventional cytogenetical analysis. Early treatment with TKIs, particularly second-generation TKIs, may be beneficial to improve treatment results.
Collapse
Affiliation(s)
- Fei Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, P.R. China.
| |
Collapse
|
4
|
Xue S, Sun HP, Huang XB, Chen X, Wang T, Ma W, Tian Y, Pan ZL, Li LH, Zhang L, Liu HX, Cao XY. Characteristics and literature review of ETV6::ABL1 fusion gene-positive acute myeloid leukemia. Int J Hematol 2024; 119:564-572. [PMID: 38441775 DOI: 10.1007/s12185-024-03729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE To describe the features of ETV6::ABL1 AML as well as the clinical treatment and outcomes. METHODS Clinical data were collected from three patients diagnosed with ETV6::ABL1 AML at Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital. Their clinical and laboratory features were analyzed, and the treatment process and outcomes were described. Ten reported cases of ETV6::ABL1 AML from the literature were also included for analysis. RESULTS The median age of the patients was 34 years, and 2 patients were male. No patient had a history of blood disorders before diagnosis. After relapse, they were referred to our hospital, where the ETV6::ABL1 gene was detected. Unfortunately, Patient 1 died rapidly after leukemia relapse due to severe infection. Patients 2 and 3 received salvage therapy with a dasatinib-containing regimen, followed by allo-HSCT, and are currently alive and disease-free. CONCLUSION ETV6::ABL1 is a rare but recurrent genetic aberration in AML, and the combined use of fluorescence in situ hybridization and PCR can better identify this fusion gene. Patients carrying ETV6::ABL1 have a high relapse rate and a poor prognosis. TKIs are a reasonable treatment option for this group, and allo-HSCT may be curative.
Collapse
Affiliation(s)
- Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Hui-Peng Sun
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Xiao-Bing Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xue Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Tong Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Wei Ma
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Yanjiao Economic and Technological Development Zone, Si Pu Lan Road, Langfang, 065201, Hebei, People's Republic of China
| | - Yao Tian
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi-Lan Pan
- Department of Hematology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| | - Li-Hong Li
- Department of Hematology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
- Department of Hematology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lu Zhang
- Department of Hematology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PekingBeijing, China
| | - Hong-Xing Liu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Yanjiao Economic and Technological Development Zone, Si Pu Lan Road, Langfang, 065201, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Bochicchio MT, Marconi G, Baldazzi C, Bandini L, Ruggieri F, Lucchesi A, Agostinelli C, Sabattini E, Orsatti A, Ferrari A, Capirossi G, Servili C, Ghelli Luserna di Rorà A, Martinelli G, Simonetti G, Rosti G. ETV6::ABL1-Positive Myeloid Neoplasm: A Case of a Durable Response to Imatinib Mesylate without Additional or Previous Treatment. Int J Mol Sci 2023; 25:118. [PMID: 38203288 PMCID: PMC10779409 DOI: 10.3390/ijms25010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
ETV6::ABL1 rearranged neoplasms are rare hematological diseases. To date, about 80 cases have been reported, including myeloid and lymphoid leukemias. The ETV6 gene codes for an ETS family transcription factor and several fusion partners have been described. When translocated, ETV6 causes the constitutive activation of the partner genes. Here, we report the case of a 54-year-old woman with a cryptic insertion of the 3' region of ABL1 in the ETV6 gene. The patient was first diagnosed with idiopathic hypereosinophilic syndrome, according to the clinical history, conventional cytogenetics, standard molecular analyses and pathologist description. Next generation sequencing of diagnosis samples unexpectedly detected both ETV6::ABL1 type A and B fusion transcripts, which were then confirmed by FISH. The diagnosis was Myeloid/Lymphoid neoplasm with ETV6::ABL1 fusion, and the patient received imatinib mesylate treatment. In a follow-up after more than one year, the patient still maintained the molecular and complete hematological responses. This case highlights the importance of timely and proper diagnostics and prompt tyrosine kinase inhibitor treatment.
Collapse
Affiliation(s)
- Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Giovanni Marconi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (G.M.); (A.L.)
| | - Carmen Baldazzi
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (C.B.); (L.B.)
| | - Lorenza Bandini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (C.B.); (L.B.)
| | - Francesca Ruggieri
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40100 Bologna, BO, Italy;
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (G.M.); (A.L.)
| | - Claudio Agostinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40100 Bologna, BO, Italy;
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (E.S.); (A.O.)
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (E.S.); (A.O.)
| | - Agnese Orsatti
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (E.S.); (A.O.)
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Giorgia Capirossi
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Chiara Servili
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | | | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy;
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Gianantonio Rosti
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (G.M.); (A.L.)
| |
Collapse
|
6
|
Qi Z, Smith C, Shah NP, Yu J. Complex Genomic Rearrangements Involving ETV6:: ABL1 Gene Fusion in an Individual with Myeloid Neoplasm. Genes (Basel) 2023; 14:1851. [PMID: 37895201 PMCID: PMC10606058 DOI: 10.3390/genes14101851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
ETV6::ABL1 gene fusion is a rare recurrent genomic rearrangement associated with hematologic malignancies, and frequently occurs with additional anomalies. Due to the opposite chromosome orientations of the ETV6 and ABL1 genes, an oncogenic in-frame ETV6::ABL1 gene fusion cannot be formed by a simple translocation. The molecular mechanism of the ETV6::ABL1 fusion and the significance of co-occurring anomalies are not fully understood. We characterized genomic alterations in an individual with ETV6::ABL1 gene-fusion-positive myeloid neoplasm using various genomic technologies. Our findings uncovered a molecular mechanism of the ETV6::ABL1 fusion, in which a paracentric inversion within the short arm of chromosome 12 (12p) and a translocation between the long arm of a chromosome 9 and the 12p with the inversion were involved. In addition, we detected multiple additional anomalies in the individual, and our findings suggested that the ETV6::ABL1 fusion occurred as a secondary event in a subset of cells with the additional anomalies. We speculate that the additional anomalies may predispose to further pathogenic changes, including ETV6::ABL1 fusion, leading to neoplastic transformation.
Collapse
Affiliation(s)
- Zhongxia Qi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94107, USA
| | - Catherine Smith
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Neil P. Shah
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94107, USA
| |
Collapse
|
7
|
Renzi S, Algawahmed F, Davidson S, Langenberg KPS, Fuligni F, Ali S, Anderson N, Brunga L, Bartram J, Abdelhaleem M, Naqvi A, Beimnet K, Schuh A, Tierens A, Malkin D, Shlien A, Shago M, Villani A. Myeloproliferative Neoplasm Driven by ETV6-ABL1 in an Adolescent with Recent History of Burkitt Leukemia. Curr Oncol 2023; 30:5946-5952. [PMID: 37503586 PMCID: PMC10378670 DOI: 10.3390/curroncol30070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
ETV6-ABL1 gene fusion is a rare genetic rearrangement in a variety of malignancies, including myeloproliferative neoplasms (MPN), acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). Here, we report the case of a 16-year-old male diagnosed with a MPN, 7 months post-completion of treatment for Burkitt leukaemia. RNA sequencing analysis confirmed the presence of an ETV6-ABL1 fusion transcript, with an intact, in-frame ABL tyrosine-kinase domain. Of note, secondary ETV6-ABL1-rearranged neoplastic diseases have not been reported to date. The patient was started on a tyrosine kinase inhibitor (TKI; imatinib) and, subsequently, underwent a 10/10 matched unrelated haematopoietic stem cell transplant. He is disease-free five years post-transplant. Definitive evidence of the prognostic influence of the ETV6-ABL1 fusion in haematological neoplasms is lacking; however, overall data suggest that it is a poor prognostic factor, particularly in patients with ALL and AML. The presence of this ETV6-ABL1 fusion should be more routinely investigated, especially in patients with a CML-like picture. More routine use of whole-genome and RNA sequencing analyses in clinical diagnostic care, in conjunction with conventional cytogenetics, will facilitate these investigations.
Collapse
Affiliation(s)
- Samuele Renzi
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M4B 1B3, Canada
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, CHUL-Laval, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Fatimah Algawahmed
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Fabio Fuligni
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Salah Ali
- Department of Pediatric Haematology and Bone Marrow Transplant, Leeds Teaching Hospitals, Leeds LS9 7TF, UK
| | - Nathaniel Anderson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jack Bartram
- Department of Hematology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Mohamed Abdelhaleem
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ahmed Naqvi
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M4B 1B3, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kassa Beimnet
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Andre Schuh
- Department of Haematology, Princess Margaret Hospital, Toronto, ON M5G 2C1, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M4B 1B3, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mary Shago
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anita Villani
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M4B 1B3, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
8
|
Yao J, Xu L, Aypar U, Meyerson HJ, Londono D, Gao Q, Baik J, Dietz J, Benayed R, Sigler A, Yabe M, Dogan A, Arcila ME, Roshal M, Zhang Y, Mauro MJ, Xiao W. Myeloid/lymphoid neoplasms with eosinophilia/ basophilia and ETV6-ABL1 fusion: cell-of-origin and response to tyrosine kinase inhibition. Haematologica 2021; 106:614-618. [PMID: 32299902 PMCID: PMC7849580 DOI: 10.3324/haematol.2020.249649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/09/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- JinJuan Yao
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Lianrong Xu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Howard J Meyerson
- Department of Pathology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Dory Londono
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qi Gao
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jeeyeon Baik
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - James Dietz
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Allison Sigler
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mariko Yabe
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Michael J Mauro
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wenbin Xiao
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Cryptic ETV6-ABL1 Fusion and MLL2 Truncation Revealed by Integrative Clinical Sequencing in Multiply Relapsed Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2019; 41:653-656. [PMID: 30028819 PMCID: PMC6339603 DOI: 10.1097/mph.0000000000001249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ETV6-ABL1 fusion is a rare genetic aberration classified as Philadelphia chromosome-like high-risk B-cell precursor acute lymphoblastic leukemia. We present the case of a child with multiply relapsed B-cell precursor acute lymphoblastic leukemia in which next-generation sequencing identified this cryptic fusion, undetected by standard testing, resulting in sustained clinical response to targetted therapy with imatinib. Upon subsequent relapse, repeat next-generation sequencing identified an additional aberration, MLL2-ADCY9, as a possible molecular driver conferring resistance to therapy. This report demonstrates the exciting potential of integrative clinical sequencing in identifying previously undetected actionable findings leading to improved outcomes in pediatric oncology patients.
Collapse
|
10
|
Chronic myelomonocytic leukemia with ETV6-ABL1 rearrangement and SMC1A mutation. Cancer Genet 2019; 238:31-36. [DOI: 10.1016/j.cancergen.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
|
11
|
Xie W, Wang SA, Hu S, Xu J, Medeiros LJ, Tang G. Myeloproliferative neoplasm with ABL1/ETV6 rearrangement mimics chronic myeloid leukemia and responds to tyrosine kinase inhibitors. Cancer Genet 2018; 228-229:41-46. [PMID: 30553471 DOI: 10.1016/j.cancergen.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 11/23/2022]
Abstract
Myeloproliferative neoplasms (MPN) associated with ABL1-ETV6 fusions are rare and poorly characterized. To date, less than 20 cases of ABL1-ETV6+ MPN have been reported. We report a 47-year-old man who presented with MPN with clinicopathologic features resembling chronic myeloid leukemia, but there was no evidence of t(9;22)(p34.1;q11.2) or BCR-ABL1 fusion. Conventional cytogenetics and fluorescence in situ hybridization analysis showed ins(12;9)(p13;q34q34) that led to ETV6-ABL1 fusion. The patient responded well to tyrosine kinase inhibitor therapy and achieved remission for 7 years.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Chromosome Aberrations
- Dasatinib/therapeutic use
- Humans
- Imatinib Mesylate/therapeutic use
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-ets/genetics
- Repressor Proteins/genetics
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Wei Xie
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Sa A Wang
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Shimin Hu
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Jie Xu
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA.
| |
Collapse
|
12
|
Dai X, Theobard R, Cheng H, Xing M, Zhang J. Fusion genes: A promising tool combating against cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:149-160. [PMID: 29357299 DOI: 10.1016/j.bbcan.2017.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
Abstract
The driving roles of fusion genes during tumorigenesis have been recognized for decades, with efficacies demonstrated in clinical diagnosis and targeted therapy. With advances in sequencing technologies and computational biology, a surge in the identification of fusion genes has been witnessed during the past decade. The discovery and presence of splicing based fusions in normal tissues have challenged our canonical conceptions on fusion genes and offered us novel medical opportunities. The specificity of fusion genes to neoplastic tissues and their diverse functionalities during carcinogenesis foster them as promising tools in the battle against cancer. It is time to re-visit and comb through our cutting-edge knowledge on fusion genes to accelerate clinical translation of these internal markers. Urged as such, we are encouraged to categorize fusion events according to mechanisms leading to their generation, oncological consequences and clinical implications, offer insights on fusion occurrence across tumors from the system level, highlight feasible practices in fusion-related pharmaceutical development, and identify understudied yet important niches that may lead future research trend in this field.
Collapse
Affiliation(s)
- Xiaofeng Dai
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Rutaganda Theobard
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengtao Xing
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Jianying Zhang
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA; Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|