1
|
Zhang J, Li C, Duan M, Qu Z, Wang Y, Dong Y, Wu Y, Fang S, Gu S. The Improvement Effects of Weizmannia coagulans BC99 on Liver Function and Gut Microbiota of Long-Term Alcohol Drinkers: A Randomized Double-Blind Clinical Trial. Nutrients 2025; 17:320. [PMID: 39861457 PMCID: PMC11769147 DOI: 10.3390/nu17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation. METHODS This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group. Two groups were given BC99 (3 g/day, 1 × 1010 CFU) or placebo (3 g/day) for 60 days, respectively. Before and after the intervention, blood routine indicators, liver function, renal function, inflammatory factors and intestinal flora were evaluated. RESULTS The results showed that intervention with Weizmannia coagulans BC99 reduced the levels of alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, serum total bilirubin, blood urea nitrogen, uric acid and 'blood urea nitrogen/creatinine'. Weizmannia coagulans BC99 also reduced the levels of pro-inflammatory factors TNF-α and IL-6 and increased the levels of anti-inflammatory factor IL-10. The results of intestinal flora analysis showed that Weizmannia coagulans BC99 regulated the imbalance of intestinal flora, increased the beneficial bacteria abundance (Prevotella, Faecalibacterium and Roseburia) and reduced the conditionally pathogenic bacteria abundance (Escherichia-Shigella and Klebsiella). Both LEfSe analysis and random forest analysis indicated that the increase in the abundance of Muribaculaceae induced by BC99 was a key factor in alleviating alcohol-induced liver damage. CONCLUSIONS These findings demonstrate that Weizmannia coagulans BC99 has the potential to alleviate alcoholic liver injury and provide an effective strategy for liver protection in long-term drinkers.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhen Qu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuguang Fang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
2
|
Li Y, Yang Y, Zheng Y, Gao Y, Shu G, Gai W, Guo Y, Deng X. Hypervirulent Klebsiella pneumoniae Mediated Hepatic Infarction Septic Shock After Rectal Cancer Surgery: A Case Report. Infect Drug Resist 2024; 17:1911-1918. [PMID: 38766680 PMCID: PMC11102091 DOI: 10.2147/idr.s452705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The liver receives blood from both the hepatic artery and portal vein. Hepatic infarction is rare in clinical practice as both the hepatic artery and portal vein can supply blood to the liver. Here, we reported a case of a 75-year-old man who underwent radical laparoscopic surgery for rectal cancer and subsequently developed hepatic infarction. The patient experienced severe infection, as well as circulatory and respiratory failure on the third day after surgery. The patient presented with high fever, chest tightness, shortness of breath, decreased blood oxygen saturation and blood pressure. The leukocyte count decreased from 8.10 × 10^9/L to 1.75 × 10^9/L. Procalcitonin (PCT) levels increased from 1.02 ng/mL to 67.14 ng/mL, and eventually reaching levels over 200 ng/mL. Enhanced abdominal computed tomography (CT) confirmed the presence of hepatic infarction, but no thrombosis was observed in the hepatic artery or portal vein. Metagenomic next-generation sequencing (mNGS) identified hypervirulent Klebsiella pneumoniae (hvKp) in the patient's blood and ascites, one day earlier than the detection results using traditional culture methods. The patient was diagnosed with hepatic infarction combined with septic shock caused by hvKp. This case emphasizes that in the high-risk group of thrombosis, infection can trigger exacerbated hepatic infarction events, particularly in cases after surgical procedures. For severely ill patients with infectious diseases who are admitted to the ICU with worsening symptoms, it is important to collect appropriate samples and send them for pathogen detection using mNGS in a timely manner. This may aid in early intervention and improve clinical outcomes.
Collapse
Affiliation(s)
- Yuanfei Li
- Department of Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Yong Yang
- Department of Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Yafeng Zheng
- WillingMed Technology (Beijing) Co., Ltd, Beijing, People’s Republic of China
| | - Yang Gao
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Guoliang Shu
- Department of General Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Wei Gai
- WillingMed Technology (Beijing) Co., Ltd, Beijing, People’s Republic of China
| | - Yuxin Guo
- WillingMed Technology (Beijing) Co., Ltd, Beijing, People’s Republic of China
| | - Xianghui Deng
- Department of Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Lin WH, Tsai TS. Comparisons of the Oral Microbiota from Seven Species of Wild Venomous Snakes in Taiwan Using the High-Throughput Amplicon Sequencing of the Full-Length 16S rRNA Gene. BIOLOGY 2023; 12:1206. [PMID: 37759605 PMCID: PMC10525742 DOI: 10.3390/biology12091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
A venomous snake's oral cavity may harbor pathogenic microorganisms that cause secondary infection at the wound site after being bitten. We collected oral samples from 37 individuals belonging to seven species of wild venomous snakes in Taiwan, including Naja atra (Na), Bungarus multicinctus (Bm), Protobothrops mucrosquamatus (Pm), Trimeresurus stejnegeri (Ts), Daboia siamensis (Ds), Deinagkistrodon acutus (Da), and alpine Trimeresurus gracilis (Tg). Bacterial species were identified using full-length 16S rRNA amplicon sequencing analysis, and this is the first study using this technique to investigate the oral microbiota of multiple Taiwanese snake species. Up to 1064 bacterial species were identified from the snake's oral cavities, with 24 pathogenic and 24 non-pathogenic species among the most abundant ones. The most abundant oral bacterial species detected in our study were different from those found in previous studies, which varied by snake species, collection sites, sampling tissues, culture dependence, and analysis methods. Multivariate analysis revealed that the oral bacterial species compositions in Na, Bm, and Pm each were significantly different from the other species, whereas those among Ts, Ds, Da, and Tg showed fewer differences. Herein, we reveal the microbial diversity in multiple species of wild snakes and provide potential therapeutic implications regarding empiric antibiotic selection for wildlife medicine and snakebite management.
Collapse
Affiliation(s)
- Wen-Hao Lin
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
4
|
Behera DU, Dixit S, Gaur M, Mishra R, Sahoo RK, Sahoo M, Behera BK, Subudhi BB, Bharat SS, Subudhi E. Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes (Basel) 2023; 14:1279. [PMID: 37372459 DOI: 10.3390/genes14061279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Morganella morganii is a Gram-negative opportunistic Enterobacteriaceae pathogen inherently resistant to colistin. This species causes various clinical and community-acquired infections. This study investigated the virulence factors, resistance mechanisms, functional pathways, and comparative genomic analysis of M. morganii strain UM869 with 79 publicly available genomes. The multidrug resistance strain UM869 harbored 65 genes associated with 30 virulence factors, including efflux pump, hemolysin, urease, adherence, toxin, and endotoxin. Additionally, this strain contained 11 genes related to target alteration, antibiotic inactivation, and efflux resistance mechanisms. Further, the comparative genomic study revealed a high genetic relatedness (98.37%) among the genomes, possibly due to the dissemination of genes between adjoining countries. The core proteome of 79 genomes contains the 2692 core, including 2447 single-copy orthologues. Among them, six were associated with resistance to major antibiotic classes manifested through antibiotic target alteration (PBP3, gyrB) and antibiotic efflux (kpnH, rsmA, qacG; rsmA; CRP). Similarly, 47 core orthologues were annotated to 27 virulence factors. Moreover, mostly core orthologues were mapped to transporters (n = 576), two-component systems (n = 148), transcription factors (n = 117), ribosomes (n = 114), and quorum sensing (n = 77). The presence of diversity in serotypes (type 2, 3, 6, 8, and 11) and variation in gene content adds to the pathogenicity, making them more difficult to treat. This study highlights the genetic similarity among the genomes of M. morganii and their restricted emergence, mostly in Asian countries, in addition to their growing pathogenicity and resistance. However, steps must be taken to undertake large-scale molecular surveillance and to direct suitable therapeutic interventions.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
- Department of Biotechnology & Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Rukmini Mishra
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Bijay Kumar Behera
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Gwalior Road, Jhansi 284003, Uttar Pradesh, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sutar Suhas Bharat
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 761211, Odisha, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| |
Collapse
|
5
|
Stepanovica M, Zepeda-Rivera MA, McGlinchey AS, Baryiames AA, Jones DS, LaCourse KD, Bullman S, Johnston CD. Complete Genome Sequence of Morganella morganii CTX51T, Isolated from a Human Cecal Adenocarcinoma. Microbiol Resour Announc 2022; 11:e0006622. [PMID: 35254123 PMCID: PMC9022561 DOI: 10.1128/mra.00066-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence of Morganella morganii CTX51T, a strain isolated from the resected tumor of a patient with cecal colorectal adenocarcinoma of the cecum. The genome comprises a circular chromosome of 4.19 Mbp, with an overall GC content of 50.4% and one circular plasmid of 8.48 kbp.
Collapse
Affiliation(s)
- Marija Stepanovica
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Martha A Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Adam S McGlinchey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexander A Baryiames
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kaitlyn D LaCourse
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Bai S, Zhang P, Zhang C, Du J, Du X, Zhu C, Liu J, Xie P, Li S. Comparative Study of the Gut Microbiota Among Four Different Marine Mammals in an Aquarium. Front Microbiol 2021; 12:769012. [PMID: 34745077 PMCID: PMC8567075 DOI: 10.3389/fmicb.2021.769012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite an increasing appreciation in the importance of host–microbe interactions in ecological and evolutionary processes, information on the gut microbial communities of some marine mammals is still lacking. Moreover, whether diet, environment, or host phylogeny has the greatest impact on microbial community structure is still unknown. To fill part of this knowledge gap, we exploited a natural experiment provided by an aquarium with belugas (Delphinapterus leucas) affiliated with family Monodontidae, Pacific white-sided dolphins (Lagenorhynchus obliquidens) and common bottlenose dolphin (Tursiops truncatus) affiliated with family Delphinidae, and Cape fur seals (Arctocephalus pusillus pusillus) affiliated with family Otariidae. Results show significant differences in microbial community composition of whales, dolphins, and fur seals and indicate that host phylogeny (family level) plays the most important role in shaping the microbial communities, rather than food and environment. In general, the gut microbial communities of dolphins had significantly lower diversity compared to that of whales and fur seals. Overall, the gut microbial communities were mainly composed of Firmicutes and Gammaproteobacteria, together with some from Bacteroidetes, Fusobacteria, and Epsilonbacteraeota. However, specific bacterial lineages were differentially distributed among the marine mammal groups. For instance, Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae were the dominant bacterial lineages in the gut of belugas, while for Cape fur seals, Moraxellaceae and Bacteroidaceae were the main bacterial lineages. Moreover, gut microbial communities in both Pacific white-sided dolphins and common bottlenose dolphins were dominated by a number of pathogenic bacteria, including Clostridium perfringens, Vibrio fluvialis, and Morganella morganii, reflecting the poor health condition of these animals. Although there is a growing recognition of the role microorganisms play in the gut of marine mammals, current knowledge about these microbial communities is still severely lacking. Large-scale research studies should be undertaken to reveal the roles played by the gut microbiota of different marine mammal species.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | | | - Jiang Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | | | - Chengwei Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jun Liu
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xie
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
7
|
Minnullina L, Pudova D, Shagimardanova E, Shigapova L, Sharipova M, Mardanova A. Comparative Genome Analysis of Uropathogenic Morganella morganii Strains. Front Cell Infect Microbiol 2019; 9:167. [PMID: 31231616 PMCID: PMC6558430 DOI: 10.3389/fcimb.2019.00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/03/2019] [Indexed: 12/02/2022] Open
Abstract
Morganella morganii is an opportunistic bacterial pathogen shown to cause a wide range of clinical and community-acquired infections. This study was aimed at sequencing and comparing the genomes of three M. morganii strains isolated from the urine samples of patients with community-acquired urinary tract infections. Draft genome sequencing was conducted using the Illumina HiSeq platform. The genomes of MM 1, MM 4, and MM 190 strains have a size of 3.82–3.97 Mb and a GC content of 50.9–51%. Protein-coding sequences (CDS) represent 96.1% of the genomes, RNAs are encoded by 2.7% of genes and pseudogenes account for 1.2% of the genomes. The pan-genome containes 4,038 CDS, of which 3,279 represent core genes. Six to ten prophages and 21–33 genomic islands were identified in the genomes of MM 1, MM 4, and MM 190. More than 30 genes encode capsular biosynthesis proteins, an average of 60 genes encode motility and chemotaxis proteins, and about 70 genes are associated with fimbrial biogenesis and adhesion. We determined that all strains contained urease gene cluster ureABCEFGD and had a urease activity. Both MM 4 and MM 190 strains are capable of hemolysis and their activity correlates well with a cytotoxicity level on T-24 bladder carcinoma cells. These activities were associated with expression of RTX toxin gene hlyA, which was introduced into the genomes by a phage similar to Salmonella phage 118970_sal4.
Collapse
Affiliation(s)
- Leyla Minnullina
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Daria Pudova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Leyla Shigapova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
8
|
Development and evaluation of an improved quantitative loop-mediated isothermal amplification method for rapid detection of Morganella morganii. Talanta 2019; 191:54-58. [DOI: 10.1016/j.talanta.2018.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 02/05/2023]
|
9
|
Li G, Niu X, Yuan S, Liang L, Liu Y, Hu L, Liu J, Cheng Z. Emergence of Morganella morganii subsp. morganii in dairy calves, China. Emerg Microbes Infect 2018; 7:172. [PMID: 30353002 PMCID: PMC6199266 DOI: 10.1038/s41426-018-0173-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Gen Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xudong Niu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shiyu Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Lu Liang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Liping Hu
- Animal Disease Prevention and Control Center of Shandong Provinces, Ji'nan, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
10
|
Leylabadlo HE, Kafil HS, Yousefi M, Aghazadeh M, Asgharzadeh M. Persistent infection with metallo-beta-lactamase and extended spectrum β-lactamase producer Morganella morganii in a patient with urinary tract infection after kidney transplantation. J Nat Sci Biol Med 2016; 7:179-81. [PMID: 27433071 PMCID: PMC4934110 DOI: 10.4103/0976-9668.184707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Organ transplant recipients under immunosuppressive therapy have a highly increased risk of acquiring unusual opportunistic infections. Diagnosis of the etiology of infection may be difficult in clinical manifestations, which need further histological and biological investigations. Here in we report, for the 1st time in the Iran, a Morganella morganii isolate harboring blaVIM, blaCTX-M, and blaSHV genes after kidney transplantation with persistent urinary infections.
Collapse
Affiliation(s)
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Infectious Disease and Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Liu H, Zhu J, Hu Q, Rao X. Morganella morganii, a non-negligent opportunistic pathogen. Int J Infect Dis 2016; 50:10-7. [PMID: 27421818 DOI: 10.1016/j.ijid.2016.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
Morganella morganii belongs to the tribe Proteeae of the Enterobacteriaceae family. This species is considered as an unusual opportunistic pathogen that mainly causes post-operative wound and urinary tract infections. However, certain clinical M. morganii isolates present resistance to multiple antibiotics by carrying various resistant genes (such as blaNDM-1, and qnrD1), thereby posing a serious challenge for clinical infection control. Moreover, virulence evolution makes M. morganii an important pathogen. Accumulated data have demonstrated that M. morganii can cause various infections, such as sepsis, abscess, purple urine bag syndrome, chorioamnionitis, and cellulitis. This bacterium often results in a high mortality rate in patients with some infections. M. morganii is considered as a non-negligent opportunistic pathogen because of the increased levels of resistance and virulence. In this review, we summarized the epidemiology of M. morganii, particularly on its resistance profile and resistant genes, as well as the disease spectrum and risk factors for its infection.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Junmin Zhu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Murphy K, Ryan C, Dempsey EM, O'Toole PW, Ross RP, Stanton C, Ryan CA. Neonatal Sulfhemoglobinemia and Hemolytic Anemia Associated With Intestinal Morganella morganii. Pediatrics 2015; 136:e1641-5. [PMID: 26553186 DOI: 10.1542/peds.2015-0996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
Sulfhemoglobinemia is a rare disorder characterized by the presence of sulfhemoglobin in the blood. It is typically drug-induced and may cause hypoxia, end-organ damage, and death through oxygen deprivation. We present here a case of non-drug-induced sulfhemoglobinemia in a 7-day-old preterm infant complicated by hemolytic anemia. Microbiota compositional analysis of fecal samples to investigate the origin of hydrogen sulphide revealed the presence of Morganella morganii at a relative abundance of 38% of the total fecal microbiota at the time of diagnosis. M morganii was not detected in the fecal samples of 40 age-matched control preterm infants. M morganii is an opportunistic pathogen that can cause serious infection, particularly in immunocompromised hosts such as neonates. Strains of M morganii are capable of producing hydrogen sulphide, and virulence factors include the production of a diffusible α-hemolysin. The infant in this case survived intact through empirical oral and intravenous antibiotic therapy, probiotic administration, and red blood cell transfusions. This coincided with a reduction in the relative abundance of M morganii to 3%. Neonatologists should have a high index of suspicion for intestinal pathogens in cases of non-drug-induced sulfhemoglobinemia and consider empirical treatment of the intestinal microbiota in this potentially lethal condition.
Collapse
Affiliation(s)
- Kiera Murphy
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Co Cork, Ireland; School of Microbiology, APC Microbiome Institute
| | - Clodagh Ryan
- Department of Haematology, Mercy University Hospital, Cork, Ireland; and
| | - Eugene M Dempsey
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland INFANT Centre, and
| | | | - R Paul Ross
- APC Microbiome Institute, College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Co Cork, Ireland; APC Microbiome Institute
| | - C Anthony Ryan
- APC Microbiome Institute, Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
13
|
D V, Jv S, Mk Y, S S. Morganella morganii causing abscess over the anterior chest wall- a case report. J Clin Diagn Res 2014; 8:DD03. [PMID: 25386434 DOI: 10.7860/jcdr/2014/8588.4898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/29/2014] [Indexed: 11/24/2022]
Abstract
A 17-year-old female college student presented with recurrent abscess over the anterior chest wall since one and half year. Morganella morganii was isolated from the aspirated pus. Patient was started on oral ciprofloxacin and the lesion resolved in two weeks.
Collapse
Affiliation(s)
- Vijaya D
- Professor & HOD, Department of Microbiology, AIMS, BG Nagara , Karnataka, India
| | - Sathish Jv
- Assistant Professor, Department of Microbiology, AIMS, BG Nagara , Karnataka, India
| | - Yashaswini Mk
- Post Graduate, Department of Microbiology, AIMS, BG Nagara , Karnataka, India
| | - Sulaiman S
- Post Graduate, Department of Microbiology, AIMS, BG Nagara , Karnataka, India
| |
Collapse
|
14
|
Chen YT, Peng HL, Shia WC, Hsu FR, Ken CF, Tsao YM, Chen CH, Liu CE, Hsieh MF, Chen HC, Tang CY, Ku TH. Whole-genome sequencing and identification of Morganella morganii KT pathogenicity-related genes. BMC Genomics 2012; 13 Suppl 7:S4. [PMID: 23282187 PMCID: PMC3521468 DOI: 10.1186/1471-2164-13-s7-s4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The opportunistic enterobacterium, Morganella morganii, which can cause bacteraemia, is the ninth most prevalent cause of clinical infections in patients at Changhua Christian Hospital, Taiwan. The KT strain of M. morganii was isolated during postoperative care of a cancer patient with a gallbladder stone who developed sepsis caused by bacteraemia. M. morganii is sometimes encountered in nosocomial settings and has been causally linked to catheter-associated bacteriuria, complex infections of the urinary and/or hepatobiliary tracts, wound infection, and septicaemia. M. morganii infection is associated with a high mortality rate, although most patients respond well to appropriate antibiotic therapy. To obtain insights into the genome biology of M. morganii and the mechanisms underlying its pathogenicity, we used Illumina technology to sequence the genome of the KT strain and compared its sequence with the genome sequences of related bacteria. RESULTS The 3,826,919-bp sequence contained in 58 contigs has a GC content of 51.15% and includes 3,565 protein-coding sequences, 72 tRNA genes, and 10 rRNA genes. The pathogenicity-related genes encode determinants of drug resistance, fimbrial adhesins, an IgA protease, haemolysins, ureases, and insecticidal and apoptotic toxins as well as proteins found in flagellae, the iron acquisition system, a type-3 secretion system (T3SS), and several two-component systems. Comparison with 14 genome sequences from other members of Enterobacteriaceae revealed different degrees of similarity to several systems found in M. morganii. The most striking similarities were found in the IS4 family of transposases, insecticidal toxins, T3SS components, and proteins required for ethanolamine use (eut operon) and cobalamin (vitamin B12) biosynthesis. The eut operon and the gene cluster for cobalamin biosynthesis are not present in the other Proteeae genomes analysed. Moreover, organisation of the 19 genes of the eut operon differs from that found in the other non-Proteeae enterobacterial genomes. CONCLUSIONS This is the first genome sequence of M. morganii, which is a clinically relevant pathogen. Comparative genome analysis revealed several pathogenicity-related genes and novel genes not found in the genomes of other members of Proteeae. Thus, the genome sequence of M. morganii provides important information concerning virulence and determinants of fitness in this pathogen.
Collapse
Affiliation(s)
- Yu-Tin Chen
- Department of Computer Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, Taiwan
| | - Hwei-Ling Peng
- Department of Biological Science and Technology, National Chiao Tung University, 1001, University Road, Hsinchu, Taiwan
| | - Wei-Chung Shia
- Cancer Research Center, Changhua Christian Hospital, 135, Nanhsiao St., Changhua, Taiwan
| | - Fang-Rong Hsu
- Master's Program in Biomedical Informatics and Biomedical Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung, Taiwan
- Department of Information Engineering and Computer Sciences, Feng Chia University, 100 Wenhwa Rd., Taichung, Taiwan
| | - Chuian-Fu Ken
- Institute of Biotechnology, National Changhua University of Education, 2 Shi-Da Rd., Changhua, Taiwan
| | - Yu-Ming Tsao
- Department of Anesthesiology, Changhua Christian Hospital, 135, Nanhsiao St., Changhua, Taiwan
| | - Chang-Hua Chen
- The Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, 135, Nanhsiao St., Changhua, Taiwan
| | - Chun-Eng Liu
- The Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, 135, Nanhsiao St., Changhua, Taiwan
| | - Ming-Feng Hsieh
- Department of Computer Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, Taiwan
| | - Huang-Chi Chen
- Division of Critical Care Medicine, Department of Internal Medicine, Changhua Christian Hospital, 135, Nanhsiao St., Changhua, Taiwan
| | - Chuan-Yi Tang
- Department of Computer Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, Taiwan
- Department of Computer Science, Providence University, 200, Chung-Chi Rd., Taichung, Taiwan
| | - Tien-Hsiung Ku
- Department of Anesthesiology, Changhua Christian Hospital, 135, Nanhsiao St., Changhua, Taiwan
| |
Collapse
|
15
|
Su Z, Zhang M, Liu X, Tong L, Huang Y, Li G, Pang Y. Comparison of bacterial diversity in wheat bran and in the gut of larvae and newly emerged adult of Musca domestica (Diptera: Muscidae) by use of ethidium monoazide reveals bacterial colonization. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:1832-1841. [PMID: 21061987 DOI: 10.1603/ec10142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The objective of the current study is to investigate the bacterial colonization within the gut of the house fly, Musca domestica L. (Diptera: Muscidae), at the larval stage and the bacterial community of the gut of the house fly at the newly emerged adult stage. After using ethidium monoazide to inhibit recovery of nucleic acids from dead bacteria, three polymerase chain reaction (PCR)-amplified 16S rDNA libraries from wheat bran, larvae, and newly emerged adults was constructed, analyzed, and compared. In total, 24, 11, and four phylotypes in the 16S rDNA libraries of wheat bran and the gut of larvae and adults, respectively, were found and assigned to three phylogenetic phyla of the domain Bacteria: Firmicutes, Proteobacteria, and Bacteroidetes. In the wheat bran library, 76% of the total number of sequences were affiliated to the genera Pseudomonas, Halomonas, Providencia, and Ignatzschineria. The three genera Morganella (79.05%), Providencia (8.78%), and Ignatzschineria (9.46%) dominated the library of the larval gut. Compared with the wheat bran library, the relative abundance of Morganella morganii (Winslow) was significantly higher (79.05 versus 0.8%), whereas that of Ignatzschineria larvae and of Providencia spp. was similar. These results demonstrate that M. morganii, Providencia spp., and I. larvae colonized the gut of the house fly larvae. Live bacteria of M. morganii, Providencia spp., and Proteus spp. were found in the gut of newly emerged adults. Therefore, the bacteria M. morganii and Providencia spp. colonized the larval gut could survive in the gut from larval metamorphosis to adult eclosion of the house fly.
Collapse
Affiliation(s)
- Zhijian Su
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Mounir K, El Koraïchi A, Ragala A, El Haddoury M, Ech-chrif El Kettani S. Une cause inhabituelle de pneumopathie communautaire grave chez le nourrisson : Morganella morganii. ACTA ACUST UNITED AC 2010; 29:498. [DOI: 10.1016/j.annfar.2010.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Ndiaye M, Sène MS, Sow AD, Seck LB, Coulibaly T, Diagne NS, Touré K, Diop AG, Ndiaye MM. Méningoencéphalite à Morganella morganii : à propos d’un cas. ACTA ACUST UNITED AC 2010; 103:230-2. [DOI: 10.1007/s13149-010-0055-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/23/2010] [Indexed: 11/24/2022]
|
18
|
Ghosh S, Bal AM, Malik I, Collier A. Fatal Morganella morganii bacteraemia in a diabetic patient with gas gangrene. J Med Microbiol 2009; 58:965-967. [PMID: 19502368 DOI: 10.1099/jmm.0.008821-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a case of a 60-year-old lady with a history of a heel ulcer that had not responded to antibiotic therapy. This progressed to involve the right leg, which was swollen and erythematous. Radiological imaging revealed the presence of gas within the fascial planes. Blood cultures on admission yielded Morganella morganii. Due to the extent of the gas gangrene and her co-morbidities the patient was not suitable for surgical intervention and was treated conservatively with antibiotics. She deteriorated and died within 72 h of presentation. Non-clostridial gas gangrene is relatively rare, and diagnosis is frequently delayed and often missed. Early aggressive surgical intervention combined with appropriate antibiotic therapy is essential. Bacterial species other than Clostridium should be considered in all cases of gas gangrene.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Department of Diabetes and Endocrinology, Ayr Hospital, NHS Ayrshire and Arran, Ayr KA6 6DX, Scotland, UK
| | - Abhijit M Bal
- Department of Medical Microbiology, Ayr Hospital, NHS Ayrshire and Arran, Ayr KA6 6DX, Scotland, UK
| | - Iqbal Malik
- Department of Diabetes and Endocrinology, Ayr Hospital, NHS Ayrshire and Arran, Ayr KA6 6DX, Scotland, UK
| | - Andrew Collier
- Department of Diabetes and Endocrinology, Ayr Hospital, NHS Ayrshire and Arran, Ayr KA6 6DX, Scotland, UK
| |
Collapse
|