1
|
Abdel-Fattah MM, Ahmed AM, Saleh RK, Messiha BAS, Rofaeil RR. The protective effect of pregabalin and xanthenone on testicular ischemia/reperfusion injury in rats. Fundam Clin Pharmacol 2024; 38:1080-1093. [PMID: 38978462 DOI: 10.1111/fcp.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Torsion of the spermatic cord is a hazardous and common urologic issue. The current work evaluates the possible protective effect of pregabalin (PGB) and xanthenone (XAN) in testicular ischemia/reperfusion injury induced by testicular torsion/detorsion in rats. MATERIALS AND METHODS Seven groups of adult male Wistar albino rats were allocated randomly into seven groups, namely, sham control, torsion/detorsion (T/D), PGB 50 mg/kg, PGB 100 mg/kg, XAN 1 mg/kg, XAN 2 mg/kg, and PGB 50 mg/kg plus XAN 1 mg/kg groups. Serum cholesterol and testosterone levels were determined. Also, the levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-қB), angiotensin (Ang) II, Ang-(1-7), and angiotensin-converting enzyme2 (ACE2) were assessed in testicular tissue. Immunohistochemical analysis of heme oxygenase-1 (HO-1) and caspase-3 was performed. Finally, the histopathological examination of the testicular tissues was performed. RESULTS The PGB 50 mg/kg, PGB 100 mg/kg, XAN 1 mg/kg, XAN 2 mg/kg, and PGB 50 mg/kg plus XAN 1 mg/kg groups showed a significant decrease in serum cholesterol, MDA, NO, TNF-α, NF-қB, and Ang-II levels coupled with a significant increase in both testosterone and ACE2 expression. Furthermore, all test groups showed a significant improvement in the histopathological picture with a reduction in caspase-3 and an increase in HO-1 immunoexpression in testicular tissue. CONCLUSION PGB and XAN may have promising effects on preventing testicular T/D injury through antioxidant, anti-inflammatory, and antiapoptotic actions.
Collapse
Affiliation(s)
- Maha M Abdel-Fattah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Remon Roshdy Rofaeil
- Department of Pharmacology, Deraya University, New Minia City, Egypt
- Department of Pharmacology, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Kim JW, Kim J, Mo H, Han H, Rim YA, Ju JH. Stepwise combined cell transplantation using mesenchymal stem cells and induced pluripotent stem cell-derived motor neuron progenitor cells in spinal cord injury. Stem Cell Res Ther 2024; 15:114. [PMID: 38650015 PMCID: PMC11036722 DOI: 10.1186/s13287-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of transplanted cells using stepwise combined cell therapy with human mesenchymal stem cells (hMSC) and induced pluripotent stem cell (iPSC)-derived motor neuron progenitor cells (iMNP) in a rat model of SCI. METHODS A contusive SCI model was developed in Sprague-Dawley rats using multicenter animal spinal cord injury study (MASCIS) impactor. Three protocols were designed and conducted as follows: (Subtopic 1) chronic SCI + iMNP, (Subtopic 2) acute SCI + multiple hMSC injections, and (Main topic) chronic SCI + stepwise combined cell therapy using multiple preemptive hMSC and iMNP. Neurite outgrowth was induced by coculturing hMSC and iPSC-derived motor neuron (iMN) on both two-dimensional (2D) and three-dimensional (3D) spheroid platforms during mature iMN differentiation in vitro. RESULTS Stepwise combined cell therapy promoted mature motor neuron differentiation and axonal regeneration at the lesional site. In addition, stepwise combined cell therapy improved behavioral recovery and was more effective than single cell therapy alone. In vitro results showed that hMSC and iMN act synergistically and play a critical role in the induction of neurite outgrowth during iMN differentiation and maturation. CONCLUSIONS Our findings show that stepwise combined cell therapy can induce alterations in the microenvironment for effective cell therapy in SCI. The in vitro results suggest that co-culturing hMSC and iMN can synergistically promote induction of MN neurite outgrowth.
Collapse
Affiliation(s)
- Jang-Woon Kim
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | | | - Hyunkyung Mo
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Heeju Han
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- YiPSCELL, Inc, Seoul, South Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Çevik D, Gümral N, Aslankoç R, Özmen Ö, Yalçın A, Kavrık O. Protective effect of pregabalin on renal and renal endothelial damage in sepsis induced by lipopolysaccharide. Immunopharmacol Immunotoxicol 2024; 46:55-66. [PMID: 37606510 DOI: 10.1080/08923973.2023.2250911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE We investigated the protective effects of pregabalin (PRG) on kidney and renal endothelial damage in sepsis induced by Lipopolysaccharide (LPS). MATERIALS AND METHODS Rats were randomly divided into three groups as control, LPS and LPS+PRG. Saline solution was administered 30 mg/kg orally and 5 mg/kg intraperitoneally (i.p.) to the control group. LPS was applied as 5 mg/kg, i.p. to the LPS group. In the LPS+PRG group, PRG at 30 mg/kg orally and one hour before LPS administration, one hour later 5 mg/kg i.p. LPS was applied. Rats were sacrificed 6 hours after LPS administration. RESULTS White Blood Cell (WBC), granulocyte, Blood Urea Nitrogen (BUN), creatinine, uric asid, Total Oxidant Status (TOS) and Oxidative Stress Index (OSI) significantly increased (p<0.05); platelets (PLT), activated partial thromboplastin time (aPTT) and Total Antioxidant Status (TAS) significantly decreased in the LPS group compared to the control group (p<0.05). In the LPS+PRG group WBC, granulocyte, BUN, creatinine, uric asid, TOS and OSI significantly decreased (p<0.05); PLT, aPTT and TAS significantly increased compared to the LPS group(p<0.05). Histopathological examinations showed that kidney and renal endothelial damage in the LPS group decreased in the LPS+PRG group. Immunohistochemically IL1-β, IL-6, IL-10, TNF-α expressions in kidney tissue and Toll-Like Receptors-4 (TLR-4) and NF-κB expressions in the renal endothelial tissue significantly increased in the LPS group compared to the control group and significantly decreased in the LPS+PRG group compared to the LPS group (p<0.001). CONCLUSIONS Sepsis causes kidney and renal endothelial damage and PRG reduces this damage. Therefore PRG can be used in prophylactic treatment in sepsis, supported by more studies.
Collapse
Affiliation(s)
- Dilek Çevik
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Nurhan Gümral
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Rahime Aslankoç
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Burdur, Turkey
| | - Arzu Yalçın
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Oğuzhan Kavrık
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
4
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
5
|
Song S, Wang Q, Qu Y, Gao W, Li D, Xu X, Yue S. Pregabalin inhibits purinergic P2Y 2 receptor and TRPV4 to suppress astrocyte activation and to relieve neuropathic pain. Eur J Pharmacol 2023; 960:176140. [PMID: 37925132 DOI: 10.1016/j.ejphar.2023.176140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUNDS Transient receptor potential vanilloid 4 (TRPV4)-mediated astrocyte activation is critical to neuropathic pain. Pregabalin, a widely used drug to treat chronic pain, is reported to lower the intracellular calcium level. However, the molecular mechanism by which pregabalin decreases the intracellular calcium level remains unknown. Purinergic P2Y2 receptor-a member of the G protein-coupled receptor (GPCR) family-regulates calcium-related signal transduction in astrocyte activation. We investigated whether P2Y2 receptor is involved in the pharmacological effects of pregabalin on neuropathic pain. METHODS Neuropathic pain was induced by chronic compression of the dorsal root ganglion (CCD) in rats. Paw withdrawal mechanical threshold (PWMT) was used for behavioral testing. Intracellular calcium concentration was measured using a fluorescent calcium indicator (Fluo-4 AM). RESULTS We found that P2Y2 receptor protein was upregulated and astrocytes were activated in the experimental rats after CCD surgery. Lipopolysaccharide (LPS) increased the intracellular calcium concentration and induced astrocyte activation in cultured astrocytes but was prevented via P2Y2 receptor inhibitor AR-C118925 or pregabalin. Furthermore, plasmid-mediated P2Y2 receptor overexpression induced an elevation of the intracellular calcium levels and inflammation in astrocytes, which was abolished by the TRPV4 inhibitor HC-067047. AR-C118925, HC-067047, and pregabalin relieved neuropathic pain and inflammation in rats after CCD surgery. Finally, plasmid-mediated P2Y2 receptor overexpression induced neuropathic pain in rats, which was abolished by pregabalin administration. CONCLUSIONS Pathophysiological variables that upregulated the P2Y2 receptor/TRPV4/calcium axis contribute to astrocyte activation in neuropathic pain. Pregabalin exerts an analgesic effect by inhibiting this pathway.
Collapse
Affiliation(s)
- Shasha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianwen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujuan Qu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuang Gao
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
7
|
Assis AD, Chiarotto GB, da Silva NS, Simões GF, Oliveira ALR. Pregabalin synchronizes the regeneration of nerve and muscle fibers optimizing the gait recovery of MDX dystrophic mice. FASEB J 2022; 36:e22511. [PMID: 35998000 DOI: 10.1096/fj.202200411rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder induced by mutations in the dystrophin gene, leading to a degeneration of muscle fibers, triggering retrograde immunomodulatory, and degenerative events in the central nervous system. Thus, neuroprotective drugs such as pregabalin (PGB) can improve motor function by modulating plasticity, together with anti-inflammatory effects. The present work aimed to study the effects of PGB on axonal regeneration after axotomy in dystrophic and non-dystrophic mice. For that, MDX and C57BL/10 mouse strains were subjected to peripheral nerve damage and were treated with PGB (30 mg/kg/day, i.p.) for 28 consecutive days. The treatment was carried out in mice as soon as they completed 5 weeks of life, 1 week before the lesion, corresponding to the peak period of muscle degeneration in the MDX strain. Six-week-old mice were submitted to unilateral sciatic nerve crush and were sacrificed in the 9th week of age. The ipsi and contralateral sciatic nerves were processed for immunohistochemistry and qRT-PCR, evaluating the expression of proteins and gene transcripts related to neuronal and Schwann cell activity. Cranial tibial muscles were dissected for evaluation of neuromuscular junctions using α-bungarotoxin, and the myelinated axons of the sciatic nerve were analyzed by morphometry. The recovery of motor function was monitored throughout the treatment through tests of forced locomotion (rotarod) and spontaneous walking track test (Catwalk system). The results show that treatment with PGB reduced the retrograde cyclic effects of muscle degeneration/regeneration on the nervous system. This fact was confirmed after peripheral nerve injury, showing better adaptation and response of neurons and glia for rapid axonal regeneration, with efficient muscle targeting and regain of function. No side effects of PGB treatment were observed, and the expression of pro-regenerative proteins in neurons and Schwann cells was upregulated. Morphometry of the axons was in line with the preservation of motor endplates, resulting in enhanced performance of dystrophic animals. Overall, the present data indicate that pregabalin is protective and enhances regeneration of the SNP during the development of DMD, improving motor function, which can, in turn, be translated to the clinic.
Collapse
Affiliation(s)
- Alex Dias Assis
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Campinas, Brazil
| | | | | | | | | |
Collapse
|
8
|
Hoelz AG, Bernardes D, Cartarozzi LP, de Oliveira ALR. Gliosis attenuation in experimental autoimmune encephalomyelitis by a combination of dimethyl fumarate and pregabalin. Front Cell Neurosci 2022; 16:921916. [PMID: 36052340 PMCID: PMC9426298 DOI: 10.3389/fncel.2022.921916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB. Pharmacological treatments were initiated with the beginning of clinical signs, and all animals were euthanized at 28 dpi for the lumbar spinal cord evaluation. The results demonstrated a stronger attenuation of the clinical presentation by the combined approach. DMF alone promoted the downregulation of Iba-1 (microglia/macrophages marker) in the ventral horn compared with the non-treated EAE animals (P < 0.05). PGB treatment was associated with reduced Iba-1 immunofluorescence in both the dorsal (P < 0.05) and ventral horn (P < 0.05) compared to EAE vehicle-treated counterparts. However, the combined approach reduced the Iba-1 marker in the dorsal (P < 0.05) and ventral (P < 0.01) horns compared to non-treated EAE animals and further reduced Iba-1 in the ventral horn compared to each drug-alone approach (P < 0.05). In addition, the combination of DMF and PGB reduced activated astrocytes (GFAP) in both the dorsal and ventral horns of the spinal cord to a naïve-like level and upregulated Nrf-2 expression. Taken together, the data herein suggest robust attenuation of the glial response in EAE mice treated with DMF and PGB.
Collapse
|
9
|
Nürnberger F, Rummel C, Ott D, Gerstberger R, Schmidt MJ, Roth J, Leisengang S. Gabapentinoids Suppress Lipopolysaccharide-Induced Interleukin-6 Production in Primary Cell Cultures of the Rat Spinal Dorsal Horn. Neuroimmunomodulation 2022; 30:1-14. [PMID: 35843206 DOI: 10.1159/000525657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Gabapentin and pregabalin are drugs to treat neuropathic pain. Several studies highlighted effects on presynaptic terminals of nociceptors. Via binding to α2δ subunits of voltage-gated calcium channels, gabapentinoids modulate the synaptic transmission of nociceptive information. However, recent studies revealed further properties of these substances. Treatment with gabapentin or pregabalin in animal models of neuropathic pain resulted not only in reduced symptoms of hyperalgesia but also in an attenuated activation of glial cells and decreased production of pro-inflammatory mediators in the spinal dorsal horn. METHODS In the present study, we aimed to investigate the impact of gabapentinoids on the inflammatory response of spinal dorsal horn cells, applying the established model of neuro-glial primary cell cultures of the superficial dorsal horn (SDH). We studied effects of gabapentin and pregabalin on lipopolysaccharide (LPS)-induced cytokine release (bioassays), expression of inflammatory marker genes (RT-qPCR), activation of transcription factors (immunocytochemistry), and Ca2+ responses of SDH neurons to stimulation with substance P and glutamate (Ca2+-imaging). RESULTS We detected an attenuated LPS-induced expression and release of interleukin-6 by SDH cultures in the presence of gabapentinoids. In addition, a significant main effect of drug treatment was observed for mRNA expression of microsomal prostaglandin E synthase 1 and the inhibitor of nuclear factor kappa B. Nuclear translocation of inflammatory transcription factors in glial cells was not significantly affected by gabapentinoid treatment. Moreover, both substances did not modulate neuronal responses upon stimulation with substance P or glutamate. CONCLUSION Our results provide evidence for anti-inflammatory capacities of gabapentinoids on the acute inflammatory response of SDH primary cultures upon LPS stimulation. Such effects may contribute to the pain-relieving effects of gabapentinoids.
Collapse
Affiliation(s)
- Franz Nürnberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior - CMBB, Philipps University Marburg & Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Ott
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Martin J Schmidt
- Department of Veterinary Clinical Sciences, Small Animal Clinic - Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior - CMBB, Philipps University Marburg & Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior - CMBB, Philipps University Marburg & Justus Liebig University Giessen, Giessen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Liao HY, Wang ZQ, Ran R, Zhou KS, Ma CW, Zhang HH. Biological Functions and Therapeutic Potential of Autophagy in Spinal Cord Injury. Front Cell Dev Biol 2022; 9:761273. [PMID: 34988074 PMCID: PMC8721099 DOI: 10.3389/fcell.2021.761273] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway that maintains metabolism and homeostasis by eliminating protein aggregates and damaged organelles. Many studies have reported that autophagy plays an important role in spinal cord injury (SCI). However, the spatiotemporal patterns of autophagy activation after traumatic SCI are contradictory. Most studies show that the activation of autophagy and inhibition of apoptosis have neuroprotective effects on traumatic SCI. However, reports demonstrate that autophagy is strongly associated with distal neuronal death and the impaired functional recovery following traumatic SCI. This article introduces SCI pathophysiology, the physiology and mechanism of autophagy, and our current review on its role in traumatic SCI. We also discuss the interaction between autophagy and apoptosis and the therapeutic effect of activating or inhibiting autophagy in promoting functional recovery. Thus, we aim to provide a theoretical basis for the biological therapy of SCI.
Collapse
Affiliation(s)
- Hai-Yang Liao
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi-Qiang Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Ran
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Pregabalin-induced neuroprotection and gait improvement in dystrophic MDX mice. Mol Cell Neurosci 2021; 114:103632. [PMID: 34058345 DOI: 10.1016/j.mcn.2021.103632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease linked to the X chromosome induced by mutations in the dystrophin gene. Neuroprotective drugs, such as pregabalin (PGB), can improve motor function through the modulation of excitatory synapses, together with anti-apoptotic and anti-inflammatory effects. The present work studied the effects of PGB in the preservation of dystrophic peripheral nerves, allowing motor improvements in MDX mice. Five weeks old MDX and C57BL/10 mice were treated with PGB (30 mg/kg/day, i.p.) or vehicle, for 28 consecutive days. The mice were sacrificed on the 9th week, the sciatic nerves were dissected out and processed for immunohistochemistry and qRT-PCR, for evaluating the expression of proteins and gene transcripts related to neuronal activity and Schwann cell function. The lumbar spinal cords were also processed for qRT-PCR to evaluate the expression of neurotrophic factors and pro- and anti-inflammatory cytokines. Cranial tibial muscles were dissected out for endplate evaluation with α-bungarotoxin. The recovery of motor function was monitored throughout the treatment, using a spontaneous walking track test (Catwalk system) and a forced locomotion test (Rotarod). The results showed that treatment with PGB reduced the retrograde effects of muscle degeneration/regeneration on the nervous system from the 5th to the 9th week in MDX mice. Thus, PGB induced protein expression in neurons and Schwann cells, protecting myelinated fibers. In turn, better axonal morphology and close-to-normal motor endplates were observed. Indeed, such effects resulted in improved motor coordination of dystrophic animals. We believe that treatment with PGB improved the balance between excitatory and inhibitory inputs to spinal motoneurons, increasing motor control. In addition, PGB enhanced peripheral nerve homeostasis, by positively affecting Schwann cells. In general, the present results indicate that pregabalin is effective in protecting the PNS during the development of DMD, improving motor coordination, indicating possible translation to the clinic.
Collapse
|
12
|
Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 2021; 144:104973. [PMID: 33497713 DOI: 10.1016/j.neuint.2021.104973] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) causes intractable disease and leads to inevitable physical, financial, and psychological burdens on patients and their families. SCI is commonly divided into primary and secondary injury. Primary injury occurs upon direct impact to the spinal cord, which leads to cell necrosis, axon disruption, and vascular loss. This triggers pathophysiological secondary injury, which has several phases: acute, subacute, intermediate, and chronic. These phases are dependent on post-injury time and pathophysiology and have various causes, such as the infiltration of inflammatory cells and release of cytokines that can act as a barrier to neural regeneration. Another unique feature of SCI is the glial scar produced from the reactive proliferation of astrocytes, which acts as a barrier to axonal regeneration. Interdisciplinary research is investigating the use of biomaterials and tissue-engineered fabrication to overcome SCI. In this review, we discuss representative biomaterials, including natural and synthetic polymers and nanomaterials. In addition, we describe several strategies to repair spinal cord injuries, such as fabrication and the delivery of therapeutic biocomponents. These biomaterials and strategies may offer beneficial information to enhance the repair of spinal cord lesions.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea; Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - So-Jung Gwak
- Department of Chemical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea.
| |
Collapse
|
13
|
Mitochondrial-Protective Effects of R-Phenibut after Experimental Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9364598. [PMID: 33274011 PMCID: PMC7700030 DOI: 10.1155/2020/9364598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Altered neuronal Ca2+ homeostasis and mitochondrial dysfunction play a central role in the pathogenesis of traumatic brain injury (TBI). R-Phenibut ((3R)-phenyl-4-aminobutyric acid) is an antagonist of the α2δ subunit of voltage-dependent calcium channels (VDCC) and an agonist of gamma-aminobutyric acid B (GABA-B) receptors. The aim of this study was to evaluate the potential therapeutic effects of R-phenibut following the lateral fluid percussion injury (latFPI) model of TBI in mice and the impact of R- and S-phenibut on mitochondrial functionality in vitro. By determining the bioavailability of R-phenibut in the mouse brain tissue and plasma, we found that R-phenibut (50 mg/kg) reached the brain tissue 15 min after intraperitoneal (i.p.) and peroral (p.o.) injections. The maximal concentration of R-phenibut in the brain tissues was 0.6 μg/g and 0.2 μg/g tissue after i.p. and p.o. administration, respectively. Male Swiss-Webster mice received i.p. injections of R-phenibut at doses of 10 or 50 mg/kg 2 h after TBI and then once daily for 7 days. R-Phenibut treatment at the dose of 50 mg/kg significantly ameliorated functional deficits after TBI on postinjury days 1, 4, and 7. Seven days after TBI, the number of Nissl-stained dark neurons (N-DNs) and interleukin-1beta (IL-1β) expression in the cerebral neocortex in the area of cortical impact were reduced. Moreover, the addition of R- and S-phenibut at a concentration of 0.5 μg/ml inhibited calcium-induced mitochondrial swelling in the brain homogenate and prevented anoxia-reoxygenation-induced increases in mitochondrial H2O2 production and the H2O2/O ratio. Taken together, these results suggest that R-phenibut could serve as a neuroprotective agent and promising drug candidate for treating TBI.
Collapse
|
14
|
Asci H, Ozmen O, Erzurumlu Y, Savas HB, Temel EN, Icten P, Hasseyid N. Ameliorative effects of pregabalin on LPS induced endothelial and cardiac toxicity. Biotech Histochem 2020; 96:364-375. [PMID: 32921172 DOI: 10.1080/10520295.2020.1810315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We investigated the antioxidant, anti-inflammatory and anti-apoptotic effects of pregabalin (PREG) on lipopolysaccharide (LPS) induced sepsis related cardiotoxicity via NF-kβ pathways. We used 24 female Wistar albino rats divided into three groups: control, LPS treated and LPS + PREG treated. Total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), tumor necrosis factor alpha (TNF-α), nuclear factor kappa beta (NF-kβ)/p65, p-NF-kβ/p65, caspase-3 (Cas-3) and cleaved Cas-3 were measured in cardiac tissues and creatine kinase MB (CKMB), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) levels were measured in blood samples. Also, Cas-3, granulocyte-colony stimulating factors (G-CSF), interleukin-6 (IL-6), serum amyloid A (SAA) and inducible nitric oxide synthase (iNOS) were measured immunohistochemically in heart and aorta tissue. In the LPS group; the levels of CKMB, AST, LDH, TOS, OSI increased and TAS decreased. TNF-α, p-NF-kβ/p65 and Cas-3 protein levels also increased in the LPS group. Immunohistochemical evaluation of the heart and aorta revealed a significant increase in the levels of Cas-3, G-CSF, SAA, IL-6 and iNOS in the LPS group. PREG treatment restored all measurements to near normal. LPS induced cardiovascular toxicity was due to inflammation, oxidative stress and apoptosis. PREG ameliorated the damage by inhibition of NF-kβ phosphorylation.
Collapse
Affiliation(s)
- H Asci
- Department of Pharmacology, Faculty of Medicine/Medicine, Medical Device and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey
| | - O Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Y Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - H B Savas
- Department of Medical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - E N Temel
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - P Icten
- Department of Pharmacology, Faculty of Medicine/Medicine, Medical Device and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey
| | - N Hasseyid
- Department of Pharmacology, Faculty of Medicine/Medicine, Medical Device and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
15
|
Abstract
BACKGROUND Pregabalin is a gamma-aminobutyric acid analog that binds to the α2-δ subunits of the pre-synaptic voltage-dependent calcium channels of nerves with a high affinity and selectivity. In this study, the retinal teratogenic potential of pregabalin was investigated in a chick embryo model. MATERIALS AND METHODS Fertilised chicken eggs were divided into groups for administration with different doses of pregabalin. All eggs were opened on the 10th day of incubation. The embryos were dissected and the effects of pregabalin on the retina were investigated histopathologically, morphometrically, and immunohistochemically (Caspase-3). RESULTS There was no statistically significant difference between the low dose pregabalin, control, or vehicle control groups in terms of the number of retina layers and retinal thickness. Medium and high dose pregabalin caused a statistically significant decrease in the number of retina layers, as well as sensory retinal and pigment epithelium layer thicknesses. The outer nuclear and outer plexiform layer did not form in the group administered a medium dose. Similarly, the outer nuclear, outer plexiform, inner nuclear, and inner plexiform layer did not form in the high-dose group. No statistically significant difference was observed between the groups in terms of cellular damage and Caspase-3 expression. CONCLUSION The use of pregabalin during pregnancy compromises retinal development in a dose-dependent manner. The use of pregabalin in pregnancy causes the aforementioned defects in this system and it may have developmental effects that needs to be further evaluated.
Collapse
Affiliation(s)
- Ilke Evrim Secinti
- Department of Pathology, School of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
16
|
Cragg JJ, Jutzeler CR, Grassner L, Ramer M, Bradke F, Kramer JLK. Beneficial "Pharmaceutical Pleiotropy" of Gabapentinoids in Spinal Cord Injury: A Case for Refining Standard-of-Care. Neurorehabil Neural Repair 2020; 34:686-689. [PMID: 32508248 DOI: 10.1177/1545968320931516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spinal cord injury results in devastating neurological deficits accompanied by lifelong disability and significant economic burden. While the development of novel compounds or cell-based interventions for spinal cord injury is unquestionably worthwhile, a complementary approach examines current standards of care and the degree to which these can be optimized to benefit long-term neurological function. Numerous classes of drugs, already in use in the acute phase of spinal cord injury, are intriguing because they (1) readily cross the blood-spinal cord barrier to modulate activity in the central nervous system and (2) are administered during a window of time in which neuroprotection, and even some repair, are feasible. Here, we review a rare case of convergent lines of evidence from both preclinical and human studies to support the early administration of a class of drug (ie, gabapentinoids) to both foster motor recovery and reduce the severity of neuropathic pain.
Collapse
Affiliation(s)
- Jacquelyn J Cragg
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lukas Grassner
- Paracelsus Medical University, Salzburg, Austria.,Medical University Innsbruck, Innsbruck, Austria
| | - Matt Ramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Frank Bradke
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Torres-González MI, Manzano-Moreno FJ, Vallecillo-Capilla MF, Olmedo-Gaya MV. Preoperative oral pregabalin for anxiety control: a systematic review. Clin Oral Investig 2020; 24:2219-2228. [PMID: 32468485 DOI: 10.1007/s00784-020-03352-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The objective of this systematic review was to determine the effectiveness of preoperative oral pregabalin for anxiety control, the most effective dosage regimen, its impact on postoperative pain, and its adverse effects. MATERIALS AND METHODS A search was conducted of PubMed/Medline and clinicaltrials.gov (National Library of Medicine, Washington, DC), Scopus, Web of Science, and Cochrane databases for studies published between January 2009 and November 2018, with no language restriction. Based on PRISMA guidelines, the specific question was: is preoperative oral pregabalin effective and safe for anxiety control in patients undergoing surgery? The critical reading of retrieved studies followed questions prepared by the CASPe Network, and their methodological quality was evaluated using the Jadad Scale. RESULTS Twelve randomized controlled trials were selected for review. All twelve studies were trials of high quality. A dose of 75 mg preoperative oral pregabalin has been found to reduce anxiety and stabilize intraoperative hemodynamics, although a more significant improvement appears to be achieved with a single dose of 150 mg pregabalin at least 1 h before the surgery. It is not associated with any severe adverse effects. CONCLUSION Preoperative administration of oral pregabalin in a single dose of 150 mg appears to be effective to significantly reduce the anxiety of patients, intraoperative hemodynamic changes, and postoperative pain. CLINICAL RELEVANCE These findings suggest that pregabalin is useful and safe for preoperative and intraoperative anxiety control in patients undergoing surgery.
Collapse
Affiliation(s)
| | - Francisco Javier Manzano-Moreno
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain. .,Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, 18071, Granada, Spain. .,Biomedical Group (BIO277), University of Granada, Granada, Spain. .,Instituto Investigación Biosanitaria, ibs.Granada, Granada, Spain.
| | - Manuel Francisco Vallecillo-Capilla
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain.,Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, 18071, Granada, Spain
| | - Maria Victoria Olmedo-Gaya
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain.,Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, 18071, Granada, Spain
| |
Collapse
|
18
|
KARACA Ö, PINAR HU, ÖZGÜR AF, KULAKSIZOĞLU S, DOĞAN R. The effect of pregabalin on tourniquet-induced ischemia-reperfusion injury: a prospective randomized study. Turk J Med Sci 2019; 49:1693-1700. [PMID: 31655508 PMCID: PMC7518663 DOI: 10.3906/sag-1902-230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Background/aim The aim of this study was to investigate the efficacy of pregabalin on ischemia-reperfusion injuries. Materials and methods Fifty-four patients were randomly assigned into 2 groups. A 150-mg tablet of pregabalin was given the night before and then 1 h before the operation for patients in Group P (pregabalin group, n = 27). A placebo was given to patients in Group C (control group, n = 27) at the same times. After combined spinal-epidural anesthesia was performed, venous blood samples were taken before tourniquet inflation (t1), just before tourniquet deflation (t2), and 20 min after tourniquet deflation (t3) for the analysis of total antioxidant status (TAS), total oxidant status (TOS), catalase (CAT), and ischemia-modified albumin (IMA). Results There was no significant difference in TAS levels between the groups for the t3 period. However, the TAS in Group P was significantly higher in the t3 period than the t2 period (mean ± SD, 0.46 ± 0.1 vs. 0.38 ± 0.2 mmol of Trolox equivalent/L, respectively; P < 0.05). The CAT level in the t3 period was significantly higher in Group P than Group C (mean ± SD, 53.04 ± 32.1 vs. 35.46 ± 17.2 µmol/formaldehyde, respectively; P < 0.05). In the t3 period, the TOS was significantly lower in Group P than Group C (mean ± SD, 11.97 ± 5 vs. 18.29 ± 9.9 pg/mL, respectively; P < 0.05). The TOS in Group P was significantly lower in the t3 period than the t2 period (mean ± SD, 11.97 ± 5 vs. 18.98 ± 10.7 pg/mL, respectively; P < 0.0001). Conclusion Pregabalin has no marked antioxidant activity, but it contributes to the antioxidant defense system of an organism.
Collapse
Affiliation(s)
- Ömer KARACA
- Department of Anesthesiology and Reanimation, Private Anıt Hospital, KonyaTurkey
- * To whom correspondence should be addressed. E-mail:
| | - Hüseyin Ulaş PINAR
- Department of Anesthesiology and Reanimation, School of Medicine, Başkent University, KonyaTurkey
| | - Ahmet Fevzi ÖZGÜR
- Department of Orthopedics and Traumatology, School of Medicine, Başkent University, KonyaTurkey
| | - Sevsen KULAKSIZOĞLU
- Department of Biochemistry, School of Medicine, Başkent University, KonyaTurkey
| | - Rafi DOĞAN
- Department of Anesthesiology and Reanimation, Çanakkale State Hospital, ÇanakkaleTurkey
| |
Collapse
|
19
|
Effects of pregabalin on spinal fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:332-339. [DOI: 10.1007/s00586-019-06226-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/21/2019] [Accepted: 11/16/2019] [Indexed: 01/09/2023]
|
20
|
Gunyeli I, Saygin M, Ozmen O. The impact of the sepsis on female urogenital system: the role of pregabalin. Arch Gynecol Obstet 2019; 300:1067-1082. [PMID: 31529363 DOI: 10.1007/s00404-019-05285-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of the study was to investigate the oxidative damage and inflammatory effects of sepsis on the urogenital system in the Lipopolysaccharide (LPS)-induced sepsis model and ameliorating role of Pregabalin (PGB). METHODS Twenty-four female Wistar Albino rats (12 months old) were divided into 3 groups as follows: Sepsis group (Group S) (5 mg/kg LPS, i.p, single dose); Sepsis+ PGB group (Group SP) (5 mg/kg LPS, i.p, single dose and 30 mg/kg PGB); Control group (Group C) (0.1 ml/oral and i.p. saline, single dose), 6 h after LPS administration, the animals were killed. Subsequently, analyses of urogenital tissue oxidant/antioxidant status, histopathological and immunohistochemical analyses were performed. RESULTS Total oxidative status (TOS) and oxidative stress index (OSI) values in the urogenital tissues were increased in Group S (Total anti-oxidative status (TAS) decreased) compared to the Control group (p < 0.05). PGB improved these values (p < 0.05). The immunohistochemical markers [Caspase-3, granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), Serum Amyloid A (SAA) and inducible nitric oxide synthase (iNOS)] were significantly increased in Group S except for bladder (p < 0.001). Statistically significant immunohistochemical positiveness was found only for IL-6 in urinary bladder, though all the others values were negative. With the administration of PGB (Group SP), the expressions of these immunoreactions were markedly decreased (p < 0.001). CONCLUSIONS These findings demonstrated that sepsis caused oxidative stress and inflammation in the urogenital tissues. We have revealed that PGB ameliorated tissue damage caused by sepsis.
Collapse
Affiliation(s)
- Ilker Gunyeli
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mustafa Saygin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University Isparta, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
21
|
Ali SA, Zaitone SA, Dessouki AA, Ali AA. Pregabalin affords retinal neuroprotection in diabetic rats: Suppression of retinal glutamate, microglia cell expression and apoptotic cell death. Exp Eye Res 2019; 184:78-90. [PMID: 31002823 DOI: 10.1016/j.exer.2019.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
Pregabalin is the first drug to receive FDA approval for treating diabetic neuropathic pain. This study investigated the neuroprotective effect of pregabalin in an experimental model of diabetic retinopathy and tested some possible mechanisms underlying the putative neuroprotective effect. Male Wistar rats received streptozotocin (45 mg/kg) to induce type 1 diabetes mellitus. After two weeks, a course of pregabalin (3, 10 and 30 mg/kg) has been launched for five consecutive weeks. Retinal expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was estimated by real-time PCR and retinal glutamate content was also estimated. Further, retinal caspase-3 immunoblotting and DNA fragmentation assays determined the degree of apoptosis. Pregabalin improved histopathological abnormalities in diabetic retinas and suppressed the diabetes-enhanced retinal expression of IL-1β, TNF-α, CD11b (a surface marker for microglia) while attenuated expression of caspase-3 and DNA fragmentation versus the diabetic group. In addition, diabetic rats treated with pregabalin displayed reductions in retinal glutamate, nitric oxide and malondialdehyde (MDA) and enhanced reduced glutathione (GSH) content versus the diabetic controls. Furthermore, pregabalin enhanced the histopathological picture and reduced fibrosis in the optic nerve of diabetic rats in addition to suppression of the content of the glia fibrillary acidic protein. The findings provide the first evidence demonstrating that pregabalin alleviates retinal neuroinflammation, apoptosis and oxidative stress in an experimental type 1 diabetes mellitus. Therefore, pregabalin might serve as a potential therapy for retinopathy after adequate clinical research.
Collapse
Affiliation(s)
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Azaa A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway. Behav Brain Res 2018; 360:303-311. [PMID: 30543902 DOI: 10.1016/j.bbr.2018.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
Abstract
Peripheral neuropathy is a common adverse effect observed during the use of paclitaxel (PTX) as chemotherapy. The present investigation was directed to estimate the modulatory effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on pregabalin (PGB) treatment in PTX-induced peripheral neuropathy. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i.p) 4 times every other day. Rats were then treated with PGB (30 mg/kg/day, p.o.) for 21 days with or without a single intravenous administration of BM-MSCs. At the end of experiment, behavioral and motor abnormalities were assessed. Animals were then sacrificed for measurement of total antioxidant capacity (TAC), nerve growth factor (NGF), nuclear factor kappa B p65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and active caspase-3 in the sciatic nerve. Moreover, protein expressions of Notch1 receptor, phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) were estimated. Finally, histological examinations were performed to assess severity of sciatic nerve damage and for estimation of BM-MSCs homing. Combined PGB/BM-MSCs therapy provided an additional improvement toward reducing PTX-induced oxidative stress, neuro-inflammation, and apoptotic markers. Interestingly, BM-MSCs therapy effectively prevented motor impairment observed by PGB treatment. Combined therapy also induced a significant increase in cell homing and prevented PTX-induced sciatic nerve damage in histological examination. The present study highlights a significant role for BM-MSCs in enhancing treatment potential of PGB and reducing its motor side effects when used as therapy in the management of peripheral neuropathy.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem Int 2018; 120:164-171. [PMID: 30118739 DOI: 10.1016/j.neuint.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Anticonvulsant drugs such as pregabalin (PGB) and lacosamide (LCM), exhibit potent analgesic effects in diabetic neuropathy; however, their possible role/mechanisms in paclitaxel (PTX)-induced peripheral neuropathy have not been elucidated, which is the aim of the present study. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i. p) on days 0, 2, 4 and 6. Forty eight hours after the last dose of PTX, rats were treated orally with 30 mg/kg/day of either PGB or LCM for 21 days. Both therapies improved thermal hyperalgesia and cold allodynia induced by PTX. Interestingly, LCM therapy showed no motor impairment that was observed upon using PGB, as demonstrated using rotarod test. Treatment with PGB or LCM restored the sciatic nerve content of the depleted total antioxidant capacity (TAC) and nerve growth factor (NGF), and lessened the elevated contents of nuclear factor kappa B p65 (NF-kB p65), tumor necrosis factor-α (TNF-α), and active caspase-3. On the molecular level, the drugs reduced the protein expression of Notch1 receptor, phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK), and the trajectory interleukin-6/phosphorylated janus kinase 2/phosphorylated signal transducer and activator of transcription 3 (IL-6/p-JAK2/p-STAT3). Therefore, the current study demonstrated a pivotal role for LCM in the management of PTX-induced peripheral neuropathy similar to PGB, but without motor adverse effects via the inhibition of oxidative stress, inflammation and apoptosis, as well as IL-6/JAK/STAT pathway and Notch1 receptor over-expression.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
24
|
Shamsi Meymandi M, Soltani Z, Sepehri G, Amiresmaili S, Farahani F, Moeini Aghtaei M. Effects of pregabalin on brain edema, neurologic and histologic outcomes in experimental traumatic brain injury. Brain Res Bull 2018; 140:169-175. [PMID: 29730418 DOI: 10.1016/j.brainresbull.2018.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brain edema and increased intracranial pressure (ICP) are among the main causes of neurological disturbance and mortality following traumatic brain injury (TBI). Since pregabalin neuroprotective effects have been shown, this study was performed to evaluate the possible neuroprotective effects of pregabalin in experimental TBI of male rats. Adult male Wistar rats were divided into 4 groups: sham, vehicle, pregabalin 30 mg/kg and pregabalin 60 mg/kg. TBI was induced in vehicle and pregabalin groups by Marmarou method. Pregabalin was administered 30 min after TBI. Sham and vehicle groups received saline. Brain water and Evans blue content and histopathological changes were evaluated 24, 5 and 24 h after TBI, respectively. The ICP and neurological outcomes (veterinary coma scale, VCS) were recorded before, 1 h and 24 h post TBI. The results showed a significant reduction in brain water content and ICP, and a significant increase in VCS of pregabalin group (60 mg/kg) as compared to vehicle group (P < 0.05). Also, pregabalin reduced brain edema and apoptosis score as compared to vehicle group. Post TBI pregabalin administration revealed a delayed but significant improvement in ICP and neurological outcomes in experimental TBI. The underlying mechanism(s) was not determined and needs further investigation.
Collapse
Affiliation(s)
- Manzumeh Shamsi Meymandi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Stem Cell Research Center, Kerman School of Medical, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran,; Physiology and Pharmacology Department, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran,.
| | - Gholamreza Sepehri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Farahani
- Physiology and Pharmacology Department, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
25
|
Biomarkers in Spinal Cord Injury: from Prognosis to Treatment. Mol Neurobiol 2018; 55:6436-6448. [DOI: 10.1007/s12035-017-0858-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
|
26
|
Song HL, Zhang X, Wang WZ, Liu RH, Zhao K, Liu MY, Gong WM, Ning B. Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway. Neural Regen Res 2018; 13:128-134. [PMID: 29451217 PMCID: PMC5840978 DOI: 10.4103/1673-5374.217349] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen's method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.
Collapse
Affiliation(s)
- Hong-Liang Song
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiang Zhang
- Hospital Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Wen-Zhao Wang
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Rong-Han Liu
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Kai Zhao
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Ming-Yuan Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Wei-Ming Gong
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Bin Ning
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
27
|
Liébana-Hermoso S, Manzano-Moreno FJ, Vallecillo-Capilla MF, Olmedo-Gaya MV. Oral pregabalin for acute pain relief after cervicofacial surgery: a systematic review. Clin Oral Investig 2017; 22:119-129. [PMID: 29101547 DOI: 10.1007/s00784-017-2272-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The objectives of this systematic review were to unify criteria on the effectiveness of oral pregabalin to treat acute post-operative pain after cervicofacial surgery, to establish the most effective dose regimens, and to determine its effect on rescue medicine consumption and its association with adverse effects. MATERIALS AND METHODS PubMed/Medline (National Library of Medicine, Washington, DC), Scopus, Web of Science, and Cochrane databases were searched for studies in any language published between January 2000 and September 2016. The following question was posed, in accordance with PRISMA guidelines: Is oral pregabalin effective and safe for the relief of acute pain after cervicofacial surgery? The critical reading of the literature utilized a list of questions prepared by the CASPe Network, applying the Jadad scale for evaluation of the methodological quality of trials. RESULTS Eleven randomized controlled clinical trials were selected. The 11 trials obtained a score ≥ 3, considered as Ib evidence level and high quality. A single oral dose of 75-mg pregabalin before or after cervicofacial surgery alleviates pain and lessens the need for rescue analgesia consumption, while the statistical significance of these effects is higher with a single dose of 150-mg pregabalin, either before or after the surgery. CONCLUSION Oral pregabalin appears to significantly alleviate post-operative pain and reduce rescue analgesia consumption, with no severe adverse effects. However, the ideal dose and most effective administration regimen remain controversial issues that need to be addressed in further high-quality clinical trials. CLINICAL RELEVANCE These findings suggest that pregabalin may be useful for acute pain relief after cervicofacial surgery.
Collapse
Affiliation(s)
- Sara Liébana-Hermoso
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain. .,Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, 18071, Granada, Spain. .,Biomedical Group (BIO277), University of Granada, Granada, Spain. .,Instituto Investigación Biosanitaria, ibs, Granada, Spain.
| | - Manuel Francisco Vallecillo-Capilla
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain.,Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, 18071, Granada, Spain
| | - Maria Victoria Olmedo-Gaya
- Master of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain.,Department of Stomatology, School of Dentistry, University of Granada, Colegio Máximo s/n, 18071, Granada, Spain
| |
Collapse
|
28
|
Daneshdoust D, Khalili-Fomeshi M, Ghasemi-Kasman M, Ghorbanian D, Hashemian M, Gholami M, Moghadamnia A, Shojaei A. Pregabalin enhances myelin repair and attenuates glial activation in lysolecithin-induced demyelination model of rat optic chiasm. Neuroscience 2017; 344:148-156. [DOI: 10.1016/j.neuroscience.2016.12.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
|
29
|
Meymandi MS, Sepehri G, Abdolsamadi M, Shaabani M, Heravi G, Yazdanpanah O, Aghtaei MM. The effects of co-administration of pregabalin and vitamin E on neuropathic pain induced by partial sciatic nerve ligation in male rats. Inflammopharmacology 2017; 25:237-246. [DOI: 10.1007/s10787-017-0325-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
|
30
|
Abstract
Spinal cord injury (SCI) has been considered an incurable condition and it often causes devastating sequelae. In terms of the pathophysiology of SCI, reducing secondary damage is the key to its treatment. Various researches and clinical trials have been performed, and some of them showed promising results; however, there is still no gold standard treatment with sufficient evidence. Two therapeutic concepts for SCI are neuroprotective and neuroregenerative strategies. The neuroprotective strategy modulates the pathomechanism of SCI. The purpose of neuroprotective treatment is to minimize secondary damage following direct injury. The aim of neuroregenerative treatment is to enhance the endogenous regeneration process and to alter the intrinsic barrier. With advancement in biotechnology, cell therapy using cell transplantation is currently under investigation. This review discusses the pathophysiology of SCI and introduces the therapeutic candidates that have been developed so far.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Yong Ha
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Il Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
31
|
Song Y, Jun JH, Shin EJ, Kwak YL, Shin JS, Shim JK. Effect of pregabalin administration upon reperfusion in a rat model of hyperglycemic stroke: Mechanistic insights associated with high-mobility group box 1. PLoS One 2017; 12:e0171147. [PMID: 28152042 PMCID: PMC5289503 DOI: 10.1371/journal.pone.0171147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia, which reduces the efficacy of treatments and worsens clinical outcomes, is common in stroke. Ability of pregabalin to reduce neuroexcitotoxicity may provide protection against stroke, even under hyperglycemia. We investigated its protective effect against hyperglycemic stroke and its possible molecular mechanisms. Male Wistar rats administered dextrose to cause hyperglycemia, underwent middle cerebral artery occlusion for 1 h and subsequent reperfusion. Rats were treated with an intraperitoneal injection of 30 mg/kg pregabalin or an equal amount of normal saline at the onset of reperfusion (n = 16 per group). At 24 h after reperfusion, neurological deficit, infarct volume, and apoptotic cell count were assessed. Western blot analysis was performed to determine protein expression of high-mobility group box 1 (HMGB1), toll-like receptor-4 (TLR-4), phosphorylated nuclear factor-kappa B (p-NF-κB), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), phosphorylated inducible and endothelial nitric oxide synthase (p-iNOS, p-eNOS), Bcl-2, Bax, Cytochrome C, and caspase-3 in the brain. Pregabalin-treated rats showed significantly improved neurological function (31% decrease in score), reduced infarct size (by 33%), fewer apoptotic cells (by 63%), and lower expression levels of HMGB1, TLR4, p-NF-κB, IL-1β, and TNF- α, compared with control rats. Decreased p-iNOS and increased p-eNOS expressions were also observed. Expression of Bax, Cytochrome C, and cleaved caspase-3/caspase3 was significantly downregulated, while Bcl-2 expression was increased by pregabalin treatment. Pregabalin administration upon reperfusion decreased neuronal death and improved neurological function in hyperglycemic stroke rats. Cogent mechanisms would include attenuation of HMGB1/TLR-4-mediated inflammation and favorable modulation of the NOS.
Collapse
Affiliation(s)
- Young Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Ji-Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Eun-Jung Shin
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
- Brain Korea 21 PLUS for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
- Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Marwaha L, Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain. Inflammopharmacology 2016; 24:319-334. [PMID: 27757590 DOI: 10.1007/s10787-016-0285-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/27/2022]
Abstract
TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic adjunct for antiretroviral drug-induced neuropathy.
Collapse
Affiliation(s)
- Lovish Marwaha
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Priyanka Saroj
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India.
| |
Collapse
|
33
|
Sałat K, Gdula-Argasińska J, Malikowska N, Podkowa A, Lipkowska A, Librowski T. Effect of pregabalin on contextual memory deficits and inflammatory state-related protein expression in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:613-23. [PMID: 26984821 PMCID: PMC4866991 DOI: 10.1007/s00210-016-1230-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia due to defects in insulin secretion or its action. Complications from long-term diabetes consist of numerous biochemical, molecular, and functional tissue alterations, including inflammation, oxidative stress, and neuropathic pain. There is also a link between diabetes mellitus and vascular dementia or Alzheimer’s disease. Hence, it is important to treat diabetic complications using drugs which do not aggravate symptoms induced by the disease itself. Pregabalin is widely used for the treatment of diabetic neuropathic pain, but little is known about its impact on cognition or inflammation-related proteins in diabetic patients. Thus, this study aimed to evaluate the effect of intraperitoneal (ip) pregabalin on contextual memory and the expression of inflammatory state-related proteins in the brains of diabetic, streptozotocin (STZ)-treated mice. STZ (200 mg/kg, ip) was used to induce diabetes mellitus. To assess the impact of pregabalin (10 mg/kg) on contextual memory, a passive avoidance task was applied. Locomotor and exploratory activities in pregabalin-treated diabetic mice were assessed by using activity cages. Using Western blot analysis, the expression of cyclooxygenase-2 (COX-2), cytosolic prostaglandin E synthase (cPGES), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor-ĸB (NF-ĸB) p50 and p65, aryl hydrocarbon receptor (AhR), as well as glucose transporter type-4 (GLUT4) was assessed in mouse brains after pregabalin treatment. Pregabalin did not aggravate STZ-induced learning deficits in vivo or influence animals’ locomotor activity. We observed significantly lower expression of COX-2, cPGES, and NF-κB p50 subunit, and higher expression of AhR and Nrf2 in the brains of pregabalin-treated mice in comparison to STZ-treated controls, which suggested immunomodulatory and anti-inflammatory effects of pregabalin. Antioxidant properties of pregabalin in the brains of diabetic animals were also demonstrated. Pregabalin does not potentiate STZ-induced cognitive decline, and it has antioxidant, immunomodulatory, and anti-inflammatory properties in mice. These results confirm the validity of its use in diabetic patients. Effect of pregabalin on fear-motivated memory and markers of brain tissue inflammation in diabetic mice ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Faculty of Pharmacy, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland.
| | - Joanna Gdula-Argasińska
- Faculty of Pharmacy, Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Natalia Malikowska
- Faculty of Pharmacy, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Adrian Podkowa
- Faculty of Pharmacy, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Anna Lipkowska
- Faculty of Pharmacy, Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Tadeusz Librowski
- Faculty of Pharmacy, Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| |
Collapse
|
34
|
Aşcı S, Demirci S, Aşcı H, Doğuç DK, Onaran İ. Neuroprotective Effects of Pregabalin on Cerebral Ischemia and Reperfusion. Balkan Med J 2016; 33:221-7. [PMID: 27403394 DOI: 10.5152/balkanmedj.2015.15742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/01/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Stroke is one of the most common causes of death and the leading cause of disability in adults. Cerebral ischemia/reperfusion injury causes cerebral edema, hemorrhage, and neuronal death. AIMS In post-ischemic reperfusion, free radical production causes brain tissue damage by oxidative stress. Pregabalin, an antiepileptic agent was shown to have antioxidant effects. The aim of this study was to evaluate the neuroprotective and antioxidant effects of pregabalin on ischemia and reperfusion in rat brain injury. STUDY DESIGN Animal experimentation. METHODS Male Wistar rats weighing (250-300 g) were randomly divided into six groups, each consisting of 6 rats: control (C), pregabalin (P), ischemia (I), pregabalin + ischemia (PI), ischemia + reperfusion (IR) and ischemia + reperfusion + pregabalin (PIR). Rats were initially pre-treated with 50 mg/kg/d pregabalin orally for two days. Then, animals that applied ischemia in I, PI, IR and PIR groups were exposed to carotid clamping for 30 minutes and 20 minutes reperfusion was performed in the relevant reperfusion groups. RESULTS NR2B receptor levels were significantly lower in the PIR group in comparison to the IR group. In the PIR group, Thiobarbituric acid reactive substance (TBARS) level had statistically significant decrease compared with IR group. Glutathione peroxidase (GSH-PX) levels were also significantly increased in the PIR group compared with I, IR and control groups. In the PI and PIR groups, catalase (CAT) levels were also significantly increased compared with I and IR groups (p=0.03 and p=0.07, respectively). CONCLUSION Pregabalin may protect the damage of oxidative stress after ischemia + reperfusion. This result would illuminate clinical studies in the future.
Collapse
Affiliation(s)
- Sanem Aşcı
- Neurology Service, Gülkent State Hospital, Isparta, Turkey
| | - Serpil Demirci
- Department of Neurology, Süleyman Demirel University School of Medicine, Isparta, Turkey
| | - Halil Aşcı
- Department of Pharmacology, Süleyman Demirel University School of Medicine, Isparta, Turkey
| | - Duygu Kumbul Doğuç
- Department of Biochemistry, Süleyman Demirel University School of Medicine, Isparta, Turkey
| | - İbrahim Onaran
- Department of Medical Biology and Genetic, Süleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
35
|
Calikoglu C, Aytekin H, Akgül O, Akgül MH, Gezen AF, Akyuz F, Cakir M. Effect of pregabalin in preventing secondary damage in traumatic brain injury: an experimental study. Med Sci Monit 2015; 21:813-20. [PMID: 25785578 PMCID: PMC4374647 DOI: 10.12659/msm.893887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background In this study we aimed to explore the effects of pregabalin on a traumatic brain injury model in rats. Material/Methods This study included 40 adult male Sprague-Dawley rats randomized into 4 groups, each of which contained equal numbers of animals. The control group had no head trauma and thus was not treated. The trauma group had head trauma but was not treated. The pregabalin group had no head trauma but was treated by pregabalin. The trauma + pregabalin group had head trauma treated with pregabalin. The biopsy samples taken from the study animals were histopathologically examined for the presence of edema, inflammation, and neuronal damage. Results All animals in the trauma group had edema, inflammation, and neuronal damage. Four subjects in the control group, 6 in the pregabalin group, and 4 in the trauma + pregabalin group had edema; inflammation was present in 1 subject in the control group, 3 subjects in the pregabalin group, and 3 subjects in the trauma + pregabalin group; neuronal damage existed in 1 subject in the control group, 1 subject in the pregabalin group, and 6 subjects in the trauma + pregabalin group. The trauma group had significantly higher edema and neuronal damage scores than the other groups. Similarly, inflammation was significantly more prevalent in the trauma group than the control and trauma + pregabalin groups. Conclusions The results of the present study indicated anti-edema, anti-inflammatory, and neuroprotective effects of pregabalin in an experimental head trauma model in rats. Pregabalin may thus be beneficial in humans with acute TBI by relieving concomitant edema and inflammation.
Collapse
Affiliation(s)
- Cagatay Calikoglu
- Department of Neurosurgery, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| | - Hikmet Aytekin
- Department of Neurosurgery, Private Anadolu Hostpital, Zonguldak, Turkey
| | - Osman Akgül
- Department of Neurosurgery, Düzce State Hospital, Düzce, Turkey
| | | | | | | | - Murteza Cakir
- Department of Neurosurgery, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
36
|
Mishriky B, Waldron N, Habib A. Impact of pregabalin on acute and persistent postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2015; 114:10-31. [DOI: 10.1093/bja/aeu293] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
Pregabalin alleviates the nitroglycerin-induced hyperalgesia in rats. Neuroscience 2014; 284:11-17. [PMID: 25290014 DOI: 10.1016/j.neuroscience.2014.08.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/09/2023]
Abstract
The association between the clinical use of nitroglycerin (NTG) and migraine suggests NTG as an animal model trigger for migraine. NTG-induced hyperalgesia in rats has been extensively used as a migraine model for pre-clinical research. Pregabalin is an anti-epileptic drug and may play a role in the preventive treatment of migraine; however, the mechanism of this action remains to be clarified. Herein, we performed the present study to investigate the effect of pregabalin on the NTG-induced hyperalgesia in rats. Sixty male Sprague-Dawley rats were divided equally into six groups. Thirty minutes before NTG injection, the rats were pretreated with pregabalin. von Frey hair testing was employed to evaluate tactile sensitivity. Enzyme-linked immunosorbent assay was used to analyze plasma calcitonin gene-related peptide (CGRP) levels in the jugular vein. Immunohistochemistry was applied to detect c-Fos-immunoreactive neurons and western blot was performed to detect c-Fos protein expression in trigeminal nucleus caudalis (TNC). We found that pregabalin pretreatment alleviated the NTG-induced hyperalgesia. Moreover, pregabalin suppressed peripheral CGRP release, c-Fos-immunoreactive neurons and the protein expression of c-Fos in TNC as well. These data suggest that pregabalin could alleviate the NTG-induced hyperalgesia. Further studies are required to determine the mechanisms of action for this effect.
Collapse
|
38
|
Silva GAA, Pradella F, Moraes A, Farias A, dos Santos LMB, de Oliveira ALR. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis. Brain Behav 2014; 4:925-35. [PMID: 25365796 PMCID: PMC4178248 DOI: 10.1002/brb3.276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. AIMS The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. METHODS AND RESULTS The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. CONCLUSIONS Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Collapse
Affiliation(s)
- Gleidy A A Silva
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Fernando Pradella
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil ; Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Adriel Moraes
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil ; Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Alessandro Farias
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil ; Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Leonilda M B dos Santos
- Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas - UNICAMP Campinas, SP, Brazil
| | - Alexandre L R de Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP Campinas, SP, Brazil
| |
Collapse
|
39
|
Linglu D, Yuxiang L, Yaqiong X, Ru Z, Lin M, Shaoju J, Juan D, Tao S, Jianqiang Y. Antinociceptive effect of matrine on vincristine-induced neuropathic pain model in mice. Neurol Sci 2013; 35:815-21. [PMID: 24337989 DOI: 10.1007/s10072-013-1603-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/07/2013] [Indexed: 11/27/2022]
Abstract
Chemotherapy drugs treatment causes neuropathic pain, hyperalgesia and allodynia are common components of neuropathic pain, so effectively therapeutic strategy is required. In this study, we evaluated the antinociceptive effects of matrine on vincristine-induced neuropathic pain in mice. Vincristine (100 μg/kg i.p.) was administered once per day for 7 days (day 0-6) in mice. Matrine (15, 30, 60 mg/kg, i.p.) was repeated administration in early phase (day 0-6) or late phase (day 7-13). Hyperalgesia and allodynia were evaluated by withdrawal response using von Frey filaments, plantar and cold-plate on 7, 14 and 21 day. Injection of vincristine produced mechanical hyperalgesia and cold allodynia. Matrine was found to produce a protective role in both von Frey filaments and cold-plate test. The analysis of the effect supports the hypothesis that matrine is useful in therapy of vincristine-induced neuropathic pain. In conclusion, this study demonstrates that administration of matrine is associated with antinociceptive effect on mechanical and cold stimuli in a mice model of vincristine-induced neuropathy pain.
Collapse
Affiliation(s)
- Dun Linglu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kang ES, Ha KY, Kim YH. Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes. J Korean Med Sci 2012; 27:586-93. [PMID: 22690088 PMCID: PMC3369443 DOI: 10.3346/jkms.2012.27.6.586] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/13/2012] [Indexed: 12/22/2022] Open
Abstract
This research was performed to investigate the differences of the transplanted cells' survival and differentiation, and its efficacy according to the delivery routes following spinal cord injury. Allogenic mesenchymal stem cells (MSCs) were transplanted intravenously (IV group) or intralesionally (IL group) at post-injury 1 day in rats. Behavioral improvement, engraftment and differentiation of the transplanted cells and the expression of neurotrophic factors of the transplanted groups were analyzed and compared with those of the control group. At 6 weeks post-injury, the mean BBB motor scales in the control, IV and IL groups were 6.5 ± 1.8, 11.1 ± 2.1, and 8.5 ± 2.8, respectively. Regardless of the delivery route, the MSCs transplantation following spinal cord injuries presented better behavioral improvement. The differentiations of the engrafted cells were different according to the delivery routes. The engrafted cells predominantly differentiated into astrocytes in the IV group and on the other hand, engrafted cells of the IL group demonstrated relatively even neural and glial differentiation. The expressions of neuronal growth factor were significantly higher in the IL group (mean relative optical density, 2.4 ± 0.15) than those in the control (2.16 ± 0.04) or IV group (1.7 ± 0.23). Transplantation of MSCs in the early stage of spinal cord injury gives a significant clinical improvement. However, the fate of the transplanted MSCs and expression of neuronal growth factors are different along the transplantation route.
Collapse
Affiliation(s)
- Eun-Sun Kang
- Department of Orthopedic Surgery, Seoul St. Mary's Hosptial, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Yong Ha
- Department of Orthopedic Surgery, Seoul St. Mary's Hosptial, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hoon Kim
- Department of Orthopedic Surgery, Seoul St. Mary's Hosptial, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
41
|
Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: An evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol 2011; 49:2557-63. [DOI: 10.1016/j.fct.2011.06.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/20/2011] [Accepted: 06/26/2011] [Indexed: 11/18/2022]
|