1
|
Salmani M, Ghaderi B, Fotoohi A, Omid-Shafa'at R, Vahabzadeh Z, Fotouhi O, Abdi M. Introducing a simple and cost-effective RT-PCR protocol for detection of DPYD*2A polymorphism: the first study in Kurdish population. Cancer Chemother Pharmacol 2022; 90:389-397. [PMID: 36083300 DOI: 10.1007/s00280-022-04472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Fluoropyrimidines, the major chemotherapeutic agents in various malignancies treatment, are metabolized by dihydropyrimidine dehydrogenase (DPD). DPD deficiency can lead to severe and sometimes fatal toxicity. In the present study, we developed a simple protocol to detect the DPYD*2A variant. Common side effects in patients treated with these drugs were also evaluated in a Kurdish population. METHOD We established a reverse-transcriptase polymerase chain reaction (RT-PCR) technique for detection of DPYD*2A. Sanger sequencing was used to confirm the results. 121 Kurdish patients receiving fluoropyrimidine derivatives were enrolled, and clinical information regarding the dosage and toxicity was analyzed. RESULTS Our RT-PCR method was able to detect one patient with heterozygous state for DPYD*2A (0.8%). The most observed adverse drug reactions were tingling, nausea, and hair loss. The frequency of patients with the toxicity of grade 3 or worse was 6.6%. CONCLUSION This was the first study that detect DPYD*2A polymorphism in the Kurdish population. Our method was successfully able to detect the DPYD*2A variant and, due to its simplicity and cost-effectiveness, it may be considered as an alternative to the current methods, especially in developing countries. Our detected polymorphism rate at 0.8% is comparable with other studies. Despite the low rate of DPYD*2A polymorphism, pharmacogenetics assessment before beginning the treatment process is highly recommended due to its association with a high risk of severe toxicity.
Collapse
Affiliation(s)
- Mohammad Salmani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bayazid Ghaderi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ramtin Omid-Shafa'at
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Omid Fotouhi
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
4
|
Negarandeh R, Salehifar E, Saghafi F, Jalali H, Janbabaei G, Abdhaghighi MJ, Nosrati A. Evaluation of adverse effects of chemotherapy regimens of 5-fluoropyrimidines derivatives and their association with DPYD polymorphisms in colorectal cancer patients. BMC Cancer 2020; 20:560. [PMID: 32546132 PMCID: PMC7298798 DOI: 10.1186/s12885-020-06904-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) and capecitabine are fluoropyrimidine derivatives that mainly metabolized with dihydropyrimidine dehydrogenase enzyme (DPD). The genetic polymorphism in the genes encoding this enzyme may result in a decrease or loss of enzyme activity which may lead to the accumulation of medicines, their metabolites and potential toxicity. METHOD This cross-sectional study was conducted on 88 participants with colorectal cancer (CRC). After DNA extraction, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to determine the DPD gene (DPYD) polymorphisms including IVS 14 + 1 G > A, 2846 A > T and 2194 G > A. Chemotherapy-induced side effects were evaluated according to the Common Terminology Criteria for Adverse Events (CTCAE Version 5.0). RESULT Data were collected from 227 chemotherapy cycles of 88 patients with CRC. In a comparison of FOLFOX and FOLFIRI regimens, there was no significant difference in the occurrence of chemotherapy-induced diarrhea, nausea, vomiting and oral mucositis. However, the peripheral neuropathy was more frequent in patients who were treated with FOLFOX (P < 0.001) and hair loss was more common in patients who received FOLFIRI regimen (P = 0.048). Incidence of the DPD IVS14 + 1 G > A polymorphism was observed in four patients (5.5%). There was no association between IVS14 + 1 G > A polymorphism and the occurrence of adverse reactions. CONCLUSION FOLFOX and FOLFIRI were the most common regimens in CRC patients and their toxicity profile was different in some adverse reactions. Prevalence of IVS14 + 1G > A variant was relatively higher than other similar studies. TRIAL REGISTRATION Approval code; IR.MAZUMS.REC.95.2480.
Collapse
Affiliation(s)
- Reza Negarandeh
- Department of Pharmaceutics, Facuity of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Salehifar
- Pharmaceutical Research Center, Hemoglobinopathy institute, Department of Clinical Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Jalali
- Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ghasem Janbabaei
- Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Anahita Nosrati
- Department of Pathology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Chougule A, Patil VM, Noronha V, Joshi A, Turkkar S, Chandrasekharan A, Pande N, Bagayatkar P, Prabhash K. Incidence and impact of Dihydropyrimidine dehydrogenase gene mutation on neoadjuvant chemotherapy in head and neck cancers. Oral Oncol 2017; 70:73-74. [DOI: 10.1016/j.oraloncology.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022]
|
6
|
|
7
|
Li L, Ma BB. Colorectal cancer in Chinese patients: current and emerging treatment options. Onco Targets Ther 2014. [PMID: 25336973 DOI: 10.2147/ott.s48409ott-7-1817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer is the second most common cancer in Hong Kong and its incidence is rising in economically developed Chinese cities, including Hong Kong and Shanghai. Several studies conducted in the People's Republic of China have characterized the unique molecular epidemiology of familial colorectal cancer syndromes and molecular biomarkers such as microsatellite instability and genetic mutations (eg, KRAS, NRAS, BRAF, PIK3CA, ERCC1) in Chinese populations. Interethnic differences in anticancer drug response and toxicity have been well described in many cancers, and this review examined the literature with regard to the tolerance of Chinese patients to commonly used chemotherapeutic regimens and targeted therapies for metastatic colorectal cancer. Studies on the pharmacogenomic differences in drug metabolizing and DNA repair enzymes between Chinese, North Asians, and Caucasian patients were also reviewed.
Collapse
Affiliation(s)
- Leung Li
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Cancer Institute, Sha Tin, Hong Kong
| | - Brigette By Ma
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Cancer Institute, Sha Tin, Hong Kong ; State Key Laboratory of South China, Sir YK Pao Cancer Center, Hong Kong Cancer Institute, Sha Tin, Hong Kong
| |
Collapse
|
8
|
Li L, Ma BBY. Colorectal cancer in Chinese patients: current and emerging treatment options. Onco Targets Ther 2014; 7:1817-28. [PMID: 25336973 PMCID: PMC4199792 DOI: 10.2147/ott.s48409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer is the second most common cancer in Hong Kong and its incidence is rising in economically developed Chinese cities, including Hong Kong and Shanghai. Several studies conducted in the People's Republic of China have characterized the unique molecular epidemiology of familial colorectal cancer syndromes and molecular biomarkers such as microsatellite instability and genetic mutations (eg, KRAS, NRAS, BRAF, PIK3CA, ERCC1) in Chinese populations. Interethnic differences in anticancer drug response and toxicity have been well described in many cancers, and this review examined the literature with regard to the tolerance of Chinese patients to commonly used chemotherapeutic regimens and targeted therapies for metastatic colorectal cancer. Studies on the pharmacogenomic differences in drug metabolizing and DNA repair enzymes between Chinese, North Asians, and Caucasian patients were also reviewed.
Collapse
Affiliation(s)
- Leung Li
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Cancer Institute, Sha Tin, Hong Kong
| | - Brigette BY Ma
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Cancer Institute, Sha Tin, Hong Kong
- State Key Laboratory of South China, Sir YK Pao Cancer Center, Hong Kong Cancer Institute, Sha Tin, Hong Kong
| |
Collapse
|