1
|
Huh JY, Jeong BH, Yoon HI, Kim H, Cho YJ, Kim C, Lee SJ, Kim HH, Ra SW, Lee YJ, Kim BK, Kim SK, Seo KH, Lee SW. Endobronchial valves for emphysema and persistent air-leak: 10-year experience in an Asian country. BMC Pulm Med 2024; 24:162. [PMID: 38570737 PMCID: PMC10988911 DOI: 10.1186/s12890-024-02982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Endobronchial valve (EBV) therapy, a validated method for bronchoscopic lung volume reduction (BLVR) in severe emphysema, has been explored for persistent air-leak (PAL) management. However, its effectiveness and safety in the Asian population require further real-world evaluation. In this study, we assessed the outcomes of treatment with EBV within this demographic. METHODS We conducted a retrospective analysis of medical records from 11 Korean centers. For the emphysema cohort, inclusion criteria were patients diagnosed with emphysema who underwent bronchoscopy intended for BLVR. We assessed these patients for clinical outcomes of chronic obstructive pulmonary disease. All patients with PAL who underwent treatment with EBV were included. We identified the underlying causes of PAL and evaluated clinical outcomes after the procedure. RESULTS The severe emphysema cohort comprised 192 patients with an average age of 70.3 years, and 95.8% of them were men. Ultimately, 137 underwent treatment with EBV. Three months after the procedure, the BLVR group demonstrated a significant improvement in forced expiratory volume in 1 s (+160 mL vs. +30 mL; P = 0.009). Radiographic evidence of lung volume reduction 6 months after BLVR was significantly associated with improved survival (adjusted hazard ratio 0.020; 95% confidence interval 0.038-0.650; P = 0.010). Although pneumothorax was more common in the BLVR group (18.9% vs. 3.8%; P = 0.018), death was higher in the no-BLVR group (38.5% vs. 54.5%, P = 0.001), whereas other adverse events were comparable between the groups. Within the subset of 18 patients with PAL, the predominant causes of air-leak included spontaneous secondary pneumothorax (44.0%), parapneumonic effusion/empyema (22.2%), and post-lung resection surgery (16.7%). Following the treatment, the majority (77.8%) successfully had their chest tubes removed. Post-procedural complications were minimal, with two incidences of hemoptysis and one of empyema, all of which were effectively managed. CONCLUSIONS Treatment with EBV provides substantial clinical benefits in the management of emphysema and PAL in the Asian population, suggesting a favorable outcome for this therapeutic approach.
Collapse
Affiliation(s)
- Jin-Young Huh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ho Il Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Changhwan Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, South Korea
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Gyeonggi-do, South Korea
| | - Seung Jun Lee
- Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hwan Hee Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Won Ra
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Ye Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Beong Ki Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - Sung Kyoung Kim
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea
| | - Ki Hyun Seo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Leppig JA, Song L, Voigt DC, Feldhaus FW, Ruwwe-Gloesenkamp C, Saccomanno J, Lassen-Schmidt BC, Neumann K, Leitner K, Hubner RH, Doellinger F. When Treatment of Pulmonary Emphysema with Endobronchial Valves Did Not Work: Evaluation of Quantitative CT Analysis and Pulmonary Function Tests Before and After Valve Explantation. Int J Chron Obstruct Pulmon Dis 2022; 17:2553-2566. [PMID: 36304970 PMCID: PMC9596192 DOI: 10.2147/copd.s367667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose To investigate changes in quantitative CT analysis (QCT) and pulmonary function tests (PFT) in pulmonary emphysema patients who required premature removal of endobronchial valves (EBV). Patients and Methods Our hospital’s medical records listed 274 patients with high-grade COPD (GOLD stages 3 and 4) and pulmonary emphysema who were treated with EBV to reduce lung volume. Prior to intervention, a complete evaluation was performed that included quantitative computed tomography analysis (QCT) of scans acquired at full inspiration and full expiration, pulmonary function tests (PFT), and paraclinical findings (6-minute walking distance test (6MWDT) and quality of life questionnaires). In 41 of these 274 patients, EBV treatment was unsuccessful and the valves had to be removed for various reasons. A total of 10 of these 41 patients ventured a second attempt at EBV therapy and underwent complete reevaluation. In our retrospective study, results from three time points were compared: Before EBV implantation (BL), after EBV implantation (TP2), and after EBV explantation (TP3). QCT parameters included lung volume, total emphysema score (TES, ie, the emphysema index) and the 15th percentile of lung attenuation (P15) for the whole lung and each lobe separately. Differences in these parameters between inspiration and expiration were calculated (Vol. Diff (%), TES Diff (%), P15 Diff (%)). The results of PFT and further clinical tests were taken from the patient’s records. Results We found persistent therapy effect in the target lobe even after valve explantation together with a compensatory hyperinflation of the rest of the lung. As a result of these two divergent effects, the volume of the total lung remained rather constant. Furthermore, there was a slight deterioration of the emphysema score for the whole lung, whereas the TES of the target lobe persistently improved. Conclusion Interestingly, we found evidence that, contrary to our expectations, unsuccessful EBV therapy can have a persistent positive effect on target lobe QCT scores.
Collapse
Affiliation(s)
- Jonas Alexander Leppig
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany,Correspondence: Jonas Alexander Leppig, Department of Radiology, Charité Universitätsmedizin Berlin, Charité Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany, Tel + 49 30 450 627 283, Fax + 49 30 450 527 911, Email
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dorothea C Voigt
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix W Feldhaus
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Ruwwe-Gloesenkamp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jacopo Saccomanno
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Konrad Neumann
- Institute of Biometrics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Leitner
- Department of Internal Medicine, Kantonsspital Aarau AG, Aarau, Switzerland
| | - Ralf H Hubner
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Doellinger
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Theilig D, Doellinger F, Poellinger A, Schreiter V, Neumann K, Hubner RH. Comparison of distinctive models for calculating an interlobar emphysema heterogeneity index in patients prior to endoscopic lung volume reduction. Int J Chron Obstruct Pulmon Dis 2017; 12:1631-1640. [PMID: 28615936 PMCID: PMC5459972 DOI: 10.2147/copd.s133348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The degree of interlobar emphysema heterogeneity is thought to play an important role in the outcome of endoscopic lung volume reduction (ELVR) therapy of patients with advanced COPD. There are multiple ways one could possibly define interlobar emphysema heterogeneity, and there is no standardized definition. Purpose The aim of this study was to derive a formula for calculating an interlobar emphysema heterogeneity index (HI) when evaluating a patient for ELVR. Furthermore, an attempt was made to identify a threshold for relevant interlobar emphysema heterogeneity with regard to ELVR. Patients and methods We retrospectively analyzed 50 patients who had undergone technically successful ELVR with placement of one-way valves at our institution and had received lung function tests and computed tomography scans before and after treatment. Predictive accuracy of the different methods for HI calculation was assessed with receiver-operating characteristic curve analysis, assuming a minimum difference in forced expiratory volume in 1 second of 100 mL to indicate a clinically important change. Results The HI defined as emphysema score of the targeted lobe (TL) minus emphysema score of the ipsilateral nontargeted lobe disregarding the middle lobe yielded the best predicative accuracy (AUC =0.73, P=0.008). The HI defined as emphysema score of the TL minus emphysema score of the lung without the TL showed a similarly good predictive accuracy (AUC =0.72, P=0.009). Subgroup analysis suggests that the impact of interlobar emphysema heterogeneity is of greater importance in patients with upper lobe predominant emphysema than in patients with lower lobe predominant emphysema. Conclusion This study reveals the most appropriate ways of calculating an interlobar emphysema heterogeneity with regard to ELVR.
Collapse
Affiliation(s)
- Dorothea Theilig
- Department of Radiology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Doellinger
- Department of Radiology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Poellinger
- Department of Radiology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Schreiter
- Department of Radiology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Konrad Neumann
- Institute of Biometrics and Clinical Epidemiology, Charité Campus Benjamin Franklin, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf-Harto Hubner
- Department of Pneumology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Hwang HJ, Hoffman EA, Lee CH, Goo JM, Levin DL, Kauczor HU, Seo JB. The role of dual-energy computed tomography in the assessment of pulmonary function. Eur J Radiol 2016; 86:320-334. [PMID: 27865580 DOI: 10.1016/j.ejrad.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.
Collapse
Affiliation(s)
- Hye Jeon Hwang
- Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796, Republic of Korea
| | - Eric A Hoffman
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241, United States
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | - David L Levin
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, United States
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505, Republic of Korea.
| |
Collapse
|
5
|
Skowasch D, Fertl A, Schwick B, Schäfer H, Hellmann A, Herth FJF. A Long-Term Follow-Up Investigation of Endobronchial Valves in Emphysema (the LIVE Study): Study Protocol and Six-Month Interim Analysis Results of a Prospective Five-Year Observational Study. Respiration 2016; 92:118-26. [PMID: 27562904 DOI: 10.1159/000448119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Randomized controlled trials indicate that significant lung volume reduction (ELVR) can be obtained with Zephyr® valves by occluding the target lobe in the absence of collateral ventilation, leading to relevant functional benefits in advanced emphysema patients. OBJECTIVES To observe the long-term effects of endobronchial valve (EBV) implantation in emphysema patients screened by Chartis assessment in the context of daily pulmonology practice. METHODS The LIVE Study is a prospective, observational, open-label, single-arm, multicenter trial conducted in Germany. 498 patients included in this interim analysis were enrolled between July 2, 2012, and September 16, 2014. The 6-month follow-up visit data were recorded for 343 patients (safety population), and complete data sets were available for 321 treated patients (efficacy population) - 56.4% male, age: 64.5 years, forced expiratory volume in 1 s (FEV1) % predicted: 31.3%, residual volume (RV) % predicted: 252%. RESULTS Efficacy results at 6 months: FEV1 (l) increased by +100 ml (+11.9%), RV (l) decreased by -0.42 liter, and the COPD Assessment Test score decreased by -3.14 points (each p < 0.0001). Safety outcomes: A total of 66 adverse events (AEs; with 50 serious AEs - SAEs) were reported in 55 patients (16%) during the hospital stay for EBV placement - pneumothorax (35 cases), chronic obstructive pulmonary disease (COPD) exacerbation (5 cases), and pneumonia (4 cases). During the subsequent 6-month follow-up window, 170 SAEs were recorded in 125 patients (36.4%), predominantly COPD exacerbation (53% of the SAEs). CONCLUSION The current results of this large-scale German observational study performed in the context of daily practice further demonstrates that ELVR with Zephyr® valves is an effective and well-tolerated treatment option in advanced emphysema.
Collapse
Affiliation(s)
- Dirk Skowasch
- Department of Internal Medicine II - Pneumology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Park TS, Hong Y, Lee JS, Oh SY, Lee SM, Kim N, Seo JB, Oh YM, Lee SD, Lee SW. Bronchoscopic lung volume reduction by endobronchial valve in advanced emphysema: the first Asian report. Int J Chron Obstruct Pulmon Dis 2015; 10:1501-11. [PMID: 26251590 PMCID: PMC4524390 DOI: 10.2147/copd.s85744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Endobronchial valve (EBV) therapy is increasingly being seen as a therapeutic option for advanced emphysema, but its clinical utility in Asian populations, who may have different phenotypes to other ethnic populations, has not been assessed. Patients and methods This prospective open-label single-arm clinical trial examined the clinical efficacy and the safety of EBV in 43 consecutive patients (mean age 68.4±7.5, forced expiratory volume in 1 second [FEV1] 24.5%±10.7% predicted, residual volume 208.7%±47.9% predicted) with severe emphysema with complete fissure and no collateral ventilation in a tertiary referral hospital in Korea. Results Compared to baseline, the patients exhibited significant improvements 6 months after EBV therapy in terms of FEV1 (from 0.68±0.26 L to 0.92±0.40 L; P<0.001), 6-minute walk distance (from 233.5±114.8 m to 299.6±87.5 m; P=0.012), modified Medical Research Council dyspnea scale (from 3.7±0.6 to 2.4±1.2; P<0.001), and St George’s Respiratory Questionnaire (from 65.59±13.07 to 53.76±11.40; P=0.028). Nine patients (20.9%) had a tuberculosis scar, but these scars did not affect target lobe volume reduction or pneumothorax frequency. Thirteen patients had adverse events, ten (23.3%) developed pneumothorax, which included one death due to tension pneumothorax. Conclusion EBV therapy was as effective and safe in Korean patients as it has been shown to be in Western countries. (Trial registration: ClinicalTrials.gov: NCT01869205).
Collapse
Affiliation(s)
- Tai Sun Park
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoonki Hong
- Department of Internal Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Young Oh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|