1
|
Uyan M, Yilmaz H, Tümkaya L, Suzan ZT, Mercantepe T. Radioprotective effects of coenzyme Q10 on X-ray radiation-induced intestinal damage via oxidative stress and apoptosis. Arch Med Res 2025; 56:103181. [PMID: 39862484 DOI: 10.1016/j.arcmed.2025.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
AIM The World Health Organization reported that cancer was the cause of death for 9.7 million people in 2022, and the numbers continue to rise every day. The present study examines the potential radioprotective effects of ubiquinone against x-ray radiation-induced intestinal damage and offers insight into new near-future methods for the treatment of radiation-induced tissue toxicity. MATERIALS AND METHODS Thirty-two male Sprague-Dawley rats were randomly divided into four groups. Group I (control) received no treatment during the experiment; Group II (IR [a single dose of 2 Gy pelvic/abdominal ionizing radiation]) received radiation only; Group III (a low dose of CoQ10 [30 mg/kg CoQ10 by oral gavage for 7 d] + IR) and Group IV (a high dose of CoQ10 [150 mg/kg CoQ10 by oral gavage for 7 d] + IR). The rats were sacrificed 24 h after x-ray radiation, and tissues were collected from the small intestine and subjected to histochemical analysis. RESULTS Diffuse villous fusion, enterocyte loss, hemorrhagic areas, inflammation, and fibrosis were observed in the IR group, as well as an increase in apoptotic enterocytes. In contrast, a decrease was observed in the IR+LD-CoQ10 and IR+HD-CoQ10 groups, along with a decrease, especially in villous fusion and enterocyte loss, hemorrhagic areas, inflammation, and fibrosis. CONCLUSION CoQ10 was found to reduce duodenal damage, oxidative stress, and apoptosis induced by x-ray radiation exposure and had a radioprotective effect.
Collapse
Affiliation(s)
- Mikail Uyan
- Departments of General Surgery, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hamit Yilmaz
- Biophysics, Recep Tayyip Erdogan University, Rize, Turkey.
| | - Levent Tümkaya
- Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zehra Topal Suzan
- Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Histology and Embryology, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
2
|
Hong R, Han Y, Chen S. Advances in micro- and nano- delivery systems for increasing the stability, bioavailability and bioactivity of coenzyme Q 10. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39819160 DOI: 10.1080/10408398.2025.2450543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coenzyme Q10 acts as a liposoluble quinone compound in mitochondrial oxidative phosphorylation, serving as an electron carrier and protecting the cell membrane structure as an antioxidant. Coenzyme Q10 has notable health benefits, including anti-aging, anti-inflammatory, prevention of cardiovascular diseases, and assistance in cancer treatment. However, its poor water solubility, unstable chemical properties, and low bioavailability significantly limit its application. This article reviewed the design and development processes of various delivery systems for coenzyme Q10, discussing the advantages and disadvantages of different delivery systems and their improvement strategies, including improvements in the stability and accessibility of emulsions, achieving higher penetration rates for oleogels, and reducing the use of toxic substances in the production process of liposomes. The mechanisms behind coenzyme Q10's low stability and bioavailability were analyzed, and the bioactivity and research prospects of coenzyme Q10 were also discussed. In summary, this review offered valuable insights into the design and application of delivery systems for coenzyme Q10, which may provide a reference for its development and application in pharmaceuticals, cosmetics, health products, and other industries in the future.
Collapse
Affiliation(s)
- Ruoxuan Hong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Yahong Han
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Tsogbadrakh B, Lee M, Jung JA, Choi YK, Lee YJ, Seo JH. A novel mouse model of image-guided radiation-induced acute kidney injury using SARRP. Biochem Biophys Res Commun 2025; 745:151264. [PMID: 39740400 DOI: 10.1016/j.bbrc.2024.151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Radiation therapy is crucial for cancer treatment, but it often causes tissue damage. The kidney, which is sensitive to radiation, is under-researched in this context. This study aimed to develop a mouse model for radiation-induced acute kidney injury (AKI) using a small animal radiation research platform (SARRP) to mimic clinical radiation conditions. To establish the optimal AKI model, six-week-old male BALB/c mice were irradiated at doses of 5, 10, 20, and 30 Gy. Based on serum creatinine and blood urea nitrogen (BUN) levels, as well as immunohistochemical staining for neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), a 30 Gy dose was selected. This dose was applied in three ways: (1) single arc after a CT scan (K1, one kidney), (2) two arcs and two static beams after a CT scan (K2, both kidneys), and (3) abdominal irradiation after a single X-ray image (AI, including the kidneys). AKI was assessed 5 days post-irradiation. All irradiated groups exhibited more weight loss compared to the sham group, with the K2 group showing the most significant loss (p < 0.001 vs. K1, p < 0.05 vs. AI). The K2 group also demonstrated a significant reduction in kidney weight (p < 0.05 vs. K1) and higher serum BUN levels (p < 0.05 vs. sham, p < 0.01 vs. K1). Histopathological analysis revealed severe damage in the K2 group, including granular casts and tubular necrosis. The K2 group had elevated NGAL, KIM-1, γ-H2AX, malondialdehyde, and caspase-3 levels, indicating increased AKI severity and DNA damage. The SARRP-created AKI model effectively targeted renal tissue while sparing extrarenal tissues, offering a more clinically relevant model compared to traditional methods. This model bridges the gap between clinical and preclinical studies, enhancing the accuracy and relevance of research on radiation-induced kidney injury.
Collapse
Affiliation(s)
- Bodokhsuren Tsogbadrakh
- Institute of Breast Cancer Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Laboratory Animal Team, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joo-Ae Jung
- Research Project Management Team, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yang-Kyu Choi
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Yong Jin Lee
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Jin-Hee Seo
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea.
| |
Collapse
|
4
|
Abd-Elhakim YM, Hashem MMM, Abo-El-Sooud K, El-Metawally AE, Hassan BA. Coenzyme Q10 Attenuates Kidney Injury Induced by Titanium Dioxide Nanoparticles and Cadmium Co-exposure in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04469-x. [PMID: 39707081 DOI: 10.1007/s12011-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
This study examined the possible defensive role of coenzyme Q10 (CQ10) against the impact of cadmium (Cd) and titanium dioxide nanoparticle (TNP) exposure on rat kidneys. Distilled water (1 mL/rat), corn oil (1 mL/rat), 10 mg CQ10/kg b.wt, 50 mg TNP/kg b.wt, 5 mg Cd/kg b.wt, TNP + Cd, or TNP + Cd + CQ10 was administered orally to seven groups of 70 male Sprague Dawley rats for 60 days. The findings demonstrated that TNP and/or Cd exposure considerably raised serum levels of several renal damage products, disturbed electrolyte balance including sodium, potassium, and calcium, decreased antioxidant enzyme concentration in the kidneys, and elevated malondialdehyde. In addition, rats exposed to TNP and/or Cd had significantly higher levels of renal titanium and Cd. In addition, rats exposed to TNP and/or Cd showed significant histopathological lesions and collagen deposition as revealed by H and E and Masson trichrome staining, respectively. The kidneys were severely damaged by the combined effects of TNP and Cd, although CQ10 greatly mitigated these effects. According to the study, exposure to TNP and Cd can damage the kidneys' function and structure, especially when combined. However, CQ10 can protect against TNP and Cd's nephrotoxic effects.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Abeer E El-Metawally
- Pathology Department, Animal Reproduction Research Institute, Giza, 3514805, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo, 11835, Egypt.
| |
Collapse
|
5
|
Demyashkin G, Koryakin S, Parshenkov M, Skovorodko P, Vadyukhin M, Uruskhanova Z, Stepanova Y, Shchekin V, Mirontsev A, Rostovskaya V, Ivanov S, Shegay P, Kaprin A. Morphofunctional Features of Glomeruli and Nephrons After Exposure to Electrons at Different Doses: Oxidative Stress, Inflammation, Apoptosis. Curr Issues Mol Biol 2024; 46:12608-12632. [PMID: 39590342 PMCID: PMC11593091 DOI: 10.3390/cimb46110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney disease has emerged as a significant global health issue, projected to become the fifth-leading cause of years of life lost by 2040. The kidneys, being highly radiosensitive, are vulnerable to damage from various forms of radiation, including gamma (γ) and X-rays. However, the effects of electron radiation on renal tissues remain poorly understood. Given the localized energy deposition of electron beams, this study seeks to investigate the dose-dependent morphological and molecular changes in the kidneys following electron irradiation, aiming to address the gap in knowledge regarding its impact on renal structures. The primary aim of this study is to conduct a detailed morphological and molecular analysis of the kidneys following localized electron irradiation at different doses, to better understand the dose-dependent effects on renal tissue structure and function in an experimental model. Male Wistar rats (n = 75) were divided into five groups, including a control group and four experimental groups receiving 2, 4, 6, or 8 Gray (Gy) of localized electron irradiation to the kidneys. Biochemical markers of inflammation (interleukin-1 beta [IL-1β], interleukin-6 [IL-6], interleukin-10 [IL-10], tumor necrosis factor-alpha [TNF-α]) and oxidative stress (malondialdehyde [MDA], superoxide dismutase [SOD], glutathione [GSH]) were measured, and morphological changes were assessed using histological and immunohistochemical techniques (TUNEL assay, caspase-3). The study revealed a significant dose-dependent increase in oxidative stress, inflammation, and renal tissue damage. Higher doses of irradiation resulted in increased apoptosis, early stages of fibrosis (at high doses), and morphological changes in renal tissue. This study highlights the dose-dependent effects of electrons on renal structures, emphasizing the need for careful consideration of the dosage in clinical use to minimize adverse effects on renal function.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Polina Skovorodko
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Yulia Stepanova
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Artem Mirontsev
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Vera Rostovskaya
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| |
Collapse
|
6
|
Ramadan SS, El Zaiat FA, Habashy EA, Montaser MM, Hassan HE, Tharwat SS, El-khadragy M, Abdel Moneim AE, Elshopakey GE, Akabawy AMA. Coenzyme Q10-Loaded Albumin Nanoparticles Protect against Redox Imbalance and Inflammatory, Apoptotic, and Histopathological Alterations in Mercuric Chloride-Induced Hepatorenal Toxicity in Rats. Biomedicines 2023; 11:3054. [PMID: 38002054 PMCID: PMC10669886 DOI: 10.3390/biomedicines11113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to mercuric chloride (HgCl2), either accidental or occupational, induces substantial liver and kidney damage. Coenzyme Q10 (CoQ10) is a natural antioxidant that also has anti-inflammatory and anti-apoptotic activities. Herein, our study aimed to investigate the possible protective effects of CoQ10 alone or loaded with albumin nanoparticles (CoQ10NPs) against HgCl2-induced hepatorenal toxicity in rats. Experimental animals received CoQ10 (10 mg/kg/oral) or CoQ10NPs (10 mg/kg/oral) and were injected intraperitoneally with HgCl2 (5 mg/kg; three times/week) for two weeks. The results indicated that CoQ10NP pretreatment caused a significant decrease in serum liver and kidney function markers. Moreover, lowered MDA and NO levels were associated with an increase in antioxidant enzyme activities (SOD, GPx, GR, and CAT), along with higher GSH contents, in both the liver and kidneys of intoxicated rats treated with CoQ10NPs. Moreover, HgCl2-intoxicated rats that received CoQ10NPs revealed a significant reduction in the hepatorenal levels of TNF-α, IL-1β, NF-κB, and TGF-β, as well as an increase in the hepatic level of the fibrotic marker (α-SMA). Notably, CoQ10NPs counteracted hepatorenal apoptosis by diminishing the levels of Bax and caspase-3 and boosting the level of Bcl-2. The hepatic and renal histopathological findings supported the abovementioned changes. In conclusion, these data suggest that CoQ10, alone or loaded with albumin nanoparticles, has great power in reversing the hepatic and renal tissue impairment induced by HgCl2 via the modulation of hepatorenal oxidative damage, inflammation, and apoptosis. Therefore, this study provides a valuable therapeutic agent (CoQ10NPs) for preventing and treating several HgCl2-induced hepatorenal disorders.
Collapse
Affiliation(s)
- Shimaa S. Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Farah A. El Zaiat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Engy A. Habashy
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mostafa M. Montaser
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Habeba E. Hassan
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shahinaz S. Tharwat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
7
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
8
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Hu F, Nie H, Xu R, Cai X, Shao L, Zhang P. Vinpocetine and coenzyme Q10 combination alleviates cognitive impairment caused by ionizing radiation by improving mitophagy. Brain Res 2022; 1792:148032. [PMID: 35907514 DOI: 10.1016/j.brainres.2022.148032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This research was designed to ascertain the effect and mechanism of vinpocetine (VIN) and coenzyme Q10 (CoQ10) combination on cognitive impairment induced by ionizing radiation (IR). METHODS Cognitive impairment in mice was induced by 9-Gy IR, and they were intraperitoneally injected with VIN, CoQ10, or VIN + CoQ10. Then novel object recognition and Morris water maze tests were used to detect cognitive function. The number of hippocampal neurons and BrdU+Dcx+ cells was observed by Nissl and immunofluorescence staining. Mitochondrial respiratory complex I, adenosine triphosphate (ATP), and mitochondrial membrane potential (MMP) were evaluated, as well as oxidative stress injury. Mitophagy in hippocampal neurons was evaluated by observing the ultrastructure of hippocampal neurons and assessing the expression of mitophagy-related proteins. RESULTS IR reduced novel object discrimination index, the time for platform crossing, and the time spent in platform quadrant, in addition to neuron loss, downregulated levels of mitochondrial respiratory complex I, ATP, and MMP, aggravated oxidative stress injury, increased expression of LC3 II/I, Beclin1, PINK1, and parkin, and decreased P62 expression. VIN or CoQ10 treatment mitigated cognitive dysfunction, neurons loss, mitochondrial damage, and oxidative stress injury, and enhanced mitophagy in hippocampal neurons. VIN and CoQ10 combination further protected against IR-induced cognitive dysfunction than VIN or CoQ10 alone. CONCLUSION VIN combined with CoQ10 improved neuron damage, promoted mitophagy, and ameliorated cognitive impairment in IR mice.
Collapse
Affiliation(s)
- Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hongbing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Renxu Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
10
|
Sahebnasagh A, Saghafi F, Azimi S, Salehifar E, Hosseinimehr SJ. Pharmacological Interventions for the Prevention and Treatment of Kidney Injury Induced by Radiotherapy: Molecular Mechanisms and Clinical Perspectives. Curr Mol Pharmacol 2021; 15:607-619. [PMID: 34429052 DOI: 10.2174/1874467214666210824123212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
More than half of cancer patients need radiotherapy during the course of their treatment. Despite the beneficial aspects, the destructive effects of radiation beams on normal tissues lead to oxidative stress, inflammation, and cell injury. Kidneys are affected during radiotherapy of abdominal malignancies. Radiation nephropathy eventually leads to the release of factors triggering systemic inflammation. Currently, there is no proven prophylactic or therapeutic intervention for the management of radiation-induced nephropathy. This article reviews the biomarkers involved in the pathophysiology of radiation-induced nephropathy and its underlying molecular mechanisms. The efficacy of compounds with potential radio-protective properties on amelioration of inflammation and oxidative stress is also discussed. By outlining the approaches for preventing and treating this critical side effect, we evaluate the potential treatment of radiation-induced nephropathy. Available preclinical and clinical studies on these compounds are also scrutinized.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Ebrahim Salehifar
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Sari. Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| |
Collapse
|
11
|
Mohamed HA, Said RS. Coenzyme Q10 attenuates inflammation and fibrosis implicated in radiation enteropathy through suppression of NF-kB/TGF-β/MMP-9 pathways. Int Immunopharmacol 2021; 92:107347. [PMID: 33418245 DOI: 10.1016/j.intimp.2020.107347] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Radiation enteropathy is one the most common clinical issue for patients receiving radiotherapy for abdominal/pelvic tumors which severely affect the quality of life of cancer patients due to dysplastic lesions (ischemia, ulcer, or fibrosis) that aggravate the radiation damage. Herein, this study demonstrated the prophylactic role of coenzyme Q10 (CoQ10), a powerful antioxidant, against radiotherapy-induced gastrointestinal injury. Male Sprague Dawley rats were divided into four groups: group 1 was defined as control, and group 2 was the irradiated group. Group 3 and 4 were CoQ10 control and radiation plus CoQ10 groups, respectively. CoQ10 (10 mg/kg) was orally administered for 10 days before 10 Gy whole-body radiation and was continued for 4 days post-irradiation. CoQ10 administration protected rats delivered a lethal dose of ϒ-radiation from changes in crypt-villus structures and promoted regeneration of the intestinal epithelium. CoQ10 attenuated radiation-induced oxidative stress by decreasing lipid peroxidation and increasing the antioxidant enzyme catalase activity and reduced glutathione level. CoQ10 also counteracts inflammatory response mediated after radiation exposure through downregulating intestinal NF-ĸB expression which subsequently decreased the level of inflammatory cytokine IL-6 and the expression of COX-2. Radiation-induced intestinal fibrosis confirmed via Masson's trichrome staining occurred through upregulating transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-9 expression, while CoQ10 administration significantly diminishes these effects which further confirmed the anti-fibrotic property of CoQ10. Therefore, CoQ10 is a promising radioprotector that could prevent intestinal complications and enhance the therapeutic ratio of radiotherapy in patients with pelvic tumors through suppressing the NF-kB/TGF-β1/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Heba A Mohamed
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
12
|
Borzoueisileh S, Shabestani Monfared A, Ghorbani H, Mortazavi SMJ, Zabihi E, Pouramir M, Shafiee M, Niksirat F. Combined Effects of Radiofrequency Electromagnetic Fields and X-Ray in Renal Tissue and Function. Res Rep Urol 2020; 12:527-532. [PMID: 33150143 PMCID: PMC7605663 DOI: 10.2147/rru.s257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Biochemical and histopathological properties of renal tissues were reported to be affected by both radiofrequency electromagnetic fields (RF-EMF) and ionizing radiation. The radiation-induced changes in the kidney, including the serum levels of blood urea nitrogen (BUN) and creatinine (Cr), could lead to adverse health outcomes such as chronic kidney disease. These complications signify the importance of the research in this field. Thus, in this study, the effects of ionizing and non-ionizing radiations, as well as their combination, were assessed by evaluating the alteration in BUN, Cr, and histopathological changes in kidney tissue. MATERIALS AND METHODS Ninety-six male Wistar rats were randomly divided into six groups and were exposed to either 900/1800MHz (mobile phone) or 2.4 GHz RF-EMF (Wi-Fi) radiation for 14 days, 8Gy x-ray, or their combination. Sera were collected from 2 mL of rat blood, then BUN and Cr levels were determined. Also, renal samples were stained with hematoxylin and eosin and evaluated histopathologically. RESULTS Both BUN and Cr levels raised non-significantly after exposure to 8 Gy x-rays. Moreover, all measurements in the samples of x-ray groups were in borderline or higher than normal values. The BUN levels of control, Wi-Fi, x-ray, and Wi-Fi+x-ray groups were not significantly different. However, Cr levels in the Wi-Fi group were significantly higher than those of the controls, and BUN to Cr ratio levels were significantly lower than those of the controls. Also, tubular atrophy and vessel wall thickening were associated with these exposures. CONCLUSION Exposure to 900/1800MHz, 2400 MHz EMF can alter the kidney function. However, pre-exposure to 900/1800MHz EMF could modulate the acute adverse effects of lethal x-ray dose, which addresses the adaptive response in the kidney.
Collapse
Affiliation(s)
- Sajad Borzoueisileh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Shabestani Monfared
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Ghorbani
- Pathology Department, Babol University of Medical Sciences, Babol, Iran
| | - S M J Mortazavi
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Pouramir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohsen Shafiee
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Niksirat
- Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
13
|
AL-Megrin WA, Soliman D, Kassab RB, Metwally DM, Ahmed E. Abdel Moneim, El-Khadragy MF. Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats. Front Physiol 2020; 11:64. [PMID: 32116774 PMCID: PMC7020615 DOI: 10.3389/fphys.2020.00064] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
The kidney is among the metabolic organs most susceptible to injury, particularly following exposure to xenobiotics and heavy metals. We aimed to explore the potential protective impacts of coenzyme Q10 (CoQ10) on lead acetate (PbAc)-induced nephrotoxicity in rats. Four experimental groups (n = 7) were applied as follows: control group, CoQ10 alone (10 mg/kg), PbAc alone (20 mg/kg), and PbAc with CoQ10. Exposure to PbAc led to the accumulation of Pb in the kidney and increased urea and creatinine serum levels. The deposition of Pb coupled with the elevation of malondialdehyde and nitrate/nitrite levels along with the upregulation of inducible nitric oxide synthase. Additionally, upon PbAc poisoning, glutathione content and the antioxidant enzymes were depleted along with the downregulation of Nrf2 and HO-1 expression. Moreover, PbAc injection increased the protein and mRNA levels of pro-inflammatory cytokines namely, tumor necrosis factor-alpha and interleukin-1 beta, while decreased the levels of interleukin-10, an anti-inflammatory cytokine, in the kidney. Furthermore, exposure to PbAc correlated with increased levels of pro-apoptotic markers, Bax and caspase-3, and reduced levels of the anti-apoptotic marker Bcl-2. The administration of CoQ10 alleviated the molecular, biochemical and histological changes following PbAc intoxication. Thus, CoQ10 reduces the deleterious cellular side effects of PbAc exposure due to its antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Wafa A. AL-Megrin
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Doaa Soliman
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Dina M. Metwally
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Zoology, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
14
|
Najafi M, Cheki M, Amini P, Javadi A, Shabeeb D, Eleojo Musa A. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. Int J Reprod Biomed 2019; 17:907-914. [PMID: 31970312 PMCID: PMC6943799 DOI: 10.18502/ijrm.v17i12.5791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Testis is one of the most sensitive organs against the toxic effect of ionizing radiation. Exposure to even a low dose of radiation during radiotherapy, diagnostic radiology, or a radiological event could pose a threat to spermatogenesis. This may lead to temporary or permanent infertility or even transfer of genomic instability to the next generations. Objective In this study, we evaluated the protective effect of treatment with three natural antioxidants; resveratrol, alpha lipoic acid, and coenzyme Q10 on radiation-induced spermatogenesis injury. Materials and Methods 30 NMRI mice (6-8 wk, 30 ± 5 gr) were randomly divided into six groups (n = 5/each) as 1) control; 2) radiation; 3) radiation + resveratrol; 4) radiation + alpha lipoic acid; 5) radiation + resveratrol + alpha lipoic acid; and 6) radiation+ Q10. Mice were treated with 100 mg/kg resveratrol or 200 mg/kg alpha lipoic acid or a combination of these drugs. Also, Q10 was administered at 200 mg/kg. All treatments were performed daily from two days before to 30 min before irradiation. Afterward, mice were exposed to 2 Gy 60 Co gamma rays; 37 days after irradiation, the testicular samples were collected and evaluated for histopathological parameters. Results Results showed that these agents are able to alleviate some toxicological parameters such as basal lamina and epididymis decreased sperm density. Also, all agents were able to increase Johnsen score. However, they could not protect against radiation-induced edema, atrophy of seminiferous tubules, and hyperplasia in Leydig cells. Conclusion This study indicates that resveratrol, alpha-lipoic acid, and Q10 have the potential to reduce some of the side effects of radiation on mice spermatogenesis. However, they cannot protect Leydig cells as a source of testosterone and seminiferous tubules as the location of sperm maturation.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Cheki
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Said RS, Mohamed HA, Kamal MM. Coenzyme Q10 mitigates ionizing radiation-induced testicular damage in rats through inhibition of oxidative stress and mitochondria-mediated apoptotic cell death. Toxicol Appl Pharmacol 2019; 383:114780. [PMID: 31618661 DOI: 10.1016/j.taap.2019.114780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Radiotherapy is a common treatment modality for cancer patients; however, its use is limited by decreasing the probability of fertility in male cancer survivors. Therefore, this study aimed to define the capability of coenzyme Q10 (CoQ10), a potent stimulator of mitochondrial function, in attenuating ionizing radiation (IR)-induced spermatogenesis impairments. Male Sprague Dawley rats were exposed to a single dose of ϒ-rays (10 Gy) and/or treated with CoQ10 (10 mg/kg, orally, for 2 consecutive weeks). IR mediated irregular seminiferous tubules, which were emerged with typical morphological characteristics of apoptosis, and nuclear condensation, while CoQ10 significantly preserved the testicular structure and maintained spermatogenesis, which was displayed by higher levels of serum estradiol and testosterone. CoQ10 remarkably augmented sperm count, motility, and viability while diminished the rate of sperm-defects relatively to their counterparts after IR exposure. CoQ10 modulations in reproductive parameters were underpinned by attenuating IR-induced oxidative stress as evidenced by decreasing lipid peroxidation and increasing the antioxidant enzymes glutathione peroxidase and glutathione-s-transferase activities, and glutathione level. Supporting the involvement of CoQ10 in the anti-apoptotic response, the reduced mRNA expression levels of p53, Puma, and Bax accompanied by the increased Bcl-2 mRNA expression were observed. Subsequently, CoQ10 ameliorated the mitochondria dependent apoptotic pathway through diminishing Bax/Bcl-2 ratio, caspase-3 protein expression, and DNA fragmentation in testes of irradiated rats. Taken together, our findings showed that CoQ10 conserved against IR-induced steroidogenesis disruption through subsiding mitochondria-mediated oxidative stress injury in germinal cells.
Collapse
Affiliation(s)
- Riham S Said
- Drug Radiation Research Department, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research & Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Chen HC, Huang CC, Lin TJ, Hsu MC, Hsu YJ. Ubiquinol Supplementation Alters Exercise Induced Fatigue by Increasing Lipid Utilization in Mice. Nutrients 2019; 11:nu11112550. [PMID: 31652711 PMCID: PMC6893484 DOI: 10.3390/nu11112550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquinol (QH), a reduced form of coenzyme Q10, is a lipid antioxidant that is hydro-soluble and is commonly formulated in commercial supplements. Ubiquinol has been increasingly reported to exert antioxidant functions, in addition to its role in the cell energy-producing system of mitochondria and adenosine triphosphate (ATP) production. The aim of this study was to assess the potential beneficial effects of QH on anti-fatigue and ergogenic functions following physiological challenge. Forty 8-week-old male Institute of Cancer Research (ICR) mice were divided into four groups (n = 10 for each group): Group 1 (vehicle control or oil only); Group 2 (1X QH dose or 102.5 mg/kg); Group 3 (2X QH dose or 205 mg/kg); Group 4 (6X QH dose or 615 mg/kg). Anti-fatigue activity and exercise performance were studied using the forelimb grip strength experiment and exhaustive weight-loaded swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen), creatine kinase (CK), and free fatty acids (FFA) after an acute exercise challenge. The forelimb grip strength and exhaustive weight-loaded swimming time of the QH-6X group were significantly higher than those of the other groups. QH supplementation dose-dependently reduced serum lactate, ammonia, and CK levels and increased the FFA concentration after acute exercise. In addition, QH increased the liver and muscle glycogen content, an important energy source during exercise. Therefore, the results suggest that QH formulation is a safe dietary supplement for amelioration of fatigue and for promoting exercise performance.
Collapse
Affiliation(s)
- Huan-Chieh Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Tien-Jen Lin
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan.
- Graduate Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| |
Collapse
|
17
|
Patten DA, Ouellet M, Allan DS, Germain M, Baird SD, Harper ME, Richardson RB. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation. FASEB J 2019; 33:9263-9278. [PMID: 31112400 PMCID: PMC6662961 DOI: 10.1096/fj.201801483rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondria are highly dynamic organelles that respond rapidly to a number of stressors to regulate energy transduction, cell death signaling, and reactive oxygen species generation. We hypothesized that mitochondrial remodeling, comprising both structural and functional alterations, following ionizing radiation (IR) may underlie some of the tenets of radiobiology. Mesenchymal stem cells (MSCs) are precursors of bone marrow stroma and are altered in acute myeloid leukemia and by radiation and chemotherapy. Here, we report on changes in mitochondrial remodeling in human MSCs following X-ray IR. Mitochondrial function was significantly increased in MSCs 4 h after IR as measured by mitochondrial oxygen consumption. Consistent with this elevated functional effect, electron transport chain supercomplexes were also increased in irradiated samples. In addition, mitochondria were significantly, albeit modestly, elongated, as measured by high-throughput automated confocal imaging coupled with automated mitochondrial morphometric analyses. We also demonstrate in fibroblasts that mitochondrial remodeling is required for the adaptation of cells to IR. To determine novel mechanisms involved in mitochondrial remodeling, we performed quantitative proteomics on isolated mitochondria from cells following IR. Label-free quantitative mitochondrial proteomics revealed notable changes in proteins in irradiated samples and identified prosaposin, and potentially its daughter protein saposin-B, as a potential candidate for regulating mitochondrial function following IR. Whereas research into the biologic effects of cellular irradiation has long focused on nuclear DNA effects, our experimental work, along with that of others, is finding that mitochondrial effects may have broader implications in the field of stress adaptation and cell death in cancer (including leukemia) and other disease states.-Patten, D. A., Ouellet, M., Allan, D. S., Germain, M., Baird, S. D., Harper, M.-E., Richardson, R. B. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation.
Collapse
Affiliation(s)
- David A Patten
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Mathieu Ouellet
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - David S Allan
- Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Germain
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Stephen D Baird
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Richard B Richardson
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.,McGill Medical Physics Unit, Glen Site, Cedars Cancer Centre, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril. Ann Biomed Eng 2019; 47:1564-1574. [PMID: 30963380 DOI: 10.1007/s10439-019-02255-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
Abstract
The kidney is one of the most radiosensitive organs; it is the primary dose-limiting organ in radiotherapies for upper abdominal cancers. The role of mitochondrial redox state in the development and treatment of renal radiation injury, however, remains ill-defined. This study utilizes 3D optical cryo-imaging to quantify renal mitochondrial bioenergetics dysfunction after 13 Gy leg-out partial body irradiation (PBI). Furthermore, the mitigating effects of lisinopril (lisino), an anti-hypertensive angiotensin converting enzyme inhibitor, is assessed in renal radiation-induced injuries. Around day 150 post-irradiation, kidneys are harvested for cryo-imaging. The 3D images of the metabolic indices (NADH, nicotinamide adenine dinucleotide, and FAD, flavin adenine dinucleotide) are acquired, and the mitochondrial redox states of the irradiated and irradiated + lisino kidneys are quantified by calculating the volumetric mean redox ratio (NADH/FAD). PBI oxidized renal mitochondrial redox state by 78%. The kidneys from the irradiated + lisino rats showed mitigation of mitochondrial redox state by 93% compared to the PBI group. The study provides evidence for an altered bioenergetics and energy metabolism in the rat model of irradiation-induced kidney damage. In addition, the results suggest that lisinopril mitigates irradiation damage by attenuating the oxidation of mitochondria leading to increase redox ratio.
Collapse
|
19
|
Renal and hepatic effects following neonatal exposure to low doses of Bisphenol-A and 137Cs. Food Chem Toxicol 2018; 114:270-277. [PMID: 29477810 DOI: 10.1016/j.fct.2018.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
137-Cesium (137Cs) is one of the most important distributed radionuclides after a nuclear accident. Humans are usually co-exposed to various environmental toxicants, being Bisphenol-A (BPA) one of them. Exposure to IR and BPA in early life is of major concern, due to the higher vulnerability of developing organs. We evaluate the renal and hepatic effects of low doses of ionizing radiation (IR) and BPA. Sixty male mice (C57BL/6J) were randomly assigned to six experimental groups (n=10) and received a single subcutaneous dose of 0.9% saline solution, 137Cs and/or BPA on postnatal day 10: control, BPA (25 μg/kgbw), Cs4000 (4000 Bq 137Cs/kgbw), Cs8000 (8000 Bq 137Cs/kgbw), BPA/Cs4000 and BPA/Cs8000. At the age of two months, urines (24h) and blood samples were collected from animals of each group to determine biochemical parameters. Finally, kidneys and liver were removed to quantify DNA damage (8-OHdG), as well as to determine CYP1A2 mRNA expression. Data suggest that both BPA and 137Cs induced renal and liver damage evidenced by oxidative stress. However, when there is a co-exposure, it seems that there are compensatory mechanisms that may reverse the damage induced by each toxic itself. Notwithstanding, more studies are necessary to better understand the synergistic mechanisms behind.
Collapse
|