1
|
Niazi F, Parker KA, Mason SJ, Singh S, Schiemann WP, Valadkhan S. Induction of Invasive Basal Phenotype in Triple-Negative Breast Cancers by Long Noncoding RNA BORG. Cancers (Basel) 2024; 16:3241. [PMID: 39335212 PMCID: PMC11430157 DOI: 10.3390/cancers16183241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Long noncoding RNAs (lncRNAs) are known to play key roles in breast cancers; however, detailed mechanistic studies of lncRNA function have not been conducted in large cohorts of breast cancer tumors, nor has inter-donor and inter-subtype variability been taken into consideration for these analyses. Here we provide the first identification and annotation of the human BORG lncRNA gene. METHODS/RESULTS Using multiple tumor cohorts of human breast cancers, we show that while BORG expression is strongly induced in breast tumors as compared to normal breast tissues, the extent of BORG induction varies widely between breast cancer subtypes and even between different tumors within the same subtype. Elevated levels of BORG in breast tumors are associated with the acquisition of core cancer aggression pathways, including those associated with basal tumor and pluripotency phenotypes and with epithelial-mesenchymal transition (EMT) programs. While a subset of BORG-associated pathways was present in high BORG-expressing tumors across all breast cancer subtypes, many were specific to tumors categorized as triple-negative breast cancers. Finally, we show that genes induced by heterologous expression of BORG in murine models of TNBC both in vitro and in vivo strongly overlap with those associated with high BORG expression levels in human TNBC tumors. CONCLUSION Our findings implicate human BORG as a novel driver of the highly aggressive basal TNBC tumor phenotype.
Collapse
Affiliation(s)
- Farshad Niazi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Kimberly A. Parker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Sara J. Mason
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - William P. Schiemann
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
2
|
Tian Y, Lei Y, Wang Y, Lai J, Wang J, Xia F. Mechanism of multidrug resistance to chemotherapy mediated by P‑glycoprotein (Review). Int J Oncol 2023; 63:119. [PMID: 37654171 PMCID: PMC10546381 DOI: 10.3892/ijo.2023.5567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Multidrug resistance (MDR) seriously limits the clinical application of chemotherapy. A mechanism underlying MDR is the overexpression of efflux transporters associated with chemotherapeutic drugs. P‑glycoprotein (P‑gp) is an ATP‑binding cassette (ABC) transporter, which promotes MDR by pumping out chemotherapeutic drugs and reducing their intracellular concentration. To date, overexpression of P‑gp has been detected in various types of chemoresistant cancer and inhibiting P‑gp‑related MDR has been suggested. The present review summarizes the mechanisms underlying MDR mediated by P‑gp in different tumors and evaluated the related signaling pathways, with the aim of improving understanding of the current status of P‑gp‑mediated chemotherapeutic resistance. This review focuses on the main mechanisms of inhibiting P‑gp‑mediated MDR, with the aim of providing a reference for the study of reversing P‑gp‑mediated MDR. The first mechanism involves decreasing the efflux activity of P‑gp by altering its conformation or hindering P‑gp‑chemotherapeutic drug binding. The second inhibitory mechanism involves inhibiting P‑gp expression to reduce efflux. The third inhibitory mechanism involves knocking out the ABCB1 gene. Potential strategies that can inhibit P‑gp include certain natural products, synthetic compounds and biological techniques. It is important to screen lead compounds or candidate techniques for P‑gp inhibition, and to identify inhibitors by targeting the relevant signaling pathways to overcome P‑gp‑mediated MDR.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yongrong Lei
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yani Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jiejuan Lai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
3
|
She K, He S, Lu X, Yu S, Li M, Xiong W, Zhou M. LncRNA SNHG7 promotes non-small cell lung cancer progression and cisplatin resistance by inducing autophagic activity. J Thorac Dis 2023; 15:155-167. [PMID: 36794139 PMCID: PMC9922599 DOI: 10.21037/jtd-22-1826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Cisplatin (DDP) is among the most widely used chemotherapeutic drugs for non-small cell lung cancer (NSCLC), yet the frequent emergence of chemoresistance serves as a major barrier to the treatment of this tumor type. Long non-coding RNAs (lncRNAs) have recently been shown to influence the ability of cells to resist particular chemotherapy drugs. The present study was developed to explore the role of the lncRNA SNHG7 as a regulator of NSCLC cell chemosensitivity. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure SNHG7 expression in NSCLC tissues from patients that were sensitive/resistant to DDP, correlations between SNHG7 expression levels and the patients' clinicopathological characteristics were assessed, and the prognostic relevance of SNHG7 expression was examined via the Kaplan-Meier approach. In addition, SNHG7 expression was assessed in NSCLC cell lines that were DDP-sensitive or -resistant, while western blotting and immunofluorescence staining were employed to detect autophagy-associated protein expression in A549, A549/DDP, HCC827, and HCC827/DDP cells. NSCLC cell chemoresistance was quantified via the Cell Counting Kit-8 (CCK-8) assay approach, and flow cytometry was used to detect the apoptotic death of these tumor cells. The chemosensitivity of xenograft tumors in vivo was further assessed to validate the functional importance of SNHG7 as a regulator of NSCLC DDP resistance. Results Relative to paracancerous tissues, NSCLC tumors exhibited SNHG7 upregulation, and this lncRNA was further upregulated in DDP-resistant patients compared to chemosensitive patients. Consistently, higher SNHG7 expression levels were correlated with worse patient survival outcomes. DDP-resistant NSCLC cells were also found to exhibit higher levels of SNHG7 expression than chemosensitive cells, and knocking down this lncRNA enhanced the sensitivity of these cells to DDP treatment, resulting in impaired proliferation and higher rates of apoptotic death. Knocking down SNHG7 was also sufficient to suppress microtubule associated protein 1 light chain 3 beta (LC3B) and Beclin1 protein levels and promote p62 upregulation in vitro. The silencing of this lncRNA additionally inhibited the resistance of NSCLC xenograft tumors to DDP treatment in vivo. Conclusions SNHG7 can promote malignant behaviors and DDP resistance in NSCLC cells at least partly via the induction of autophagic activity.
Collapse
Affiliation(s)
- Kelin She
- Cancer Research Institute, Central South University, Changsha, China;,Department of Thoracic Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China;,NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, China
| | - Shushuai He
- Department of Thoracic Surgery, the Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Xiao Lu
- Department of Thoracic Surgery, the Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Shaoqi Yu
- Department of Thoracic Surgery, the Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Mengna Li
- Cancer Research Institute, Central South University, Changsha, China;,NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Changsha, China;,NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, China;,NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, China
| |
Collapse
|
4
|
Bian Z, Ji W, Xu B, Huang W, Jiao J, Shao J, Zhang X. The role of long noncoding RNA SNHG7 in human cancers (Review). Mol Clin Oncol 2020; 13:45. [PMID: 32874575 PMCID: PMC7453396 DOI: 10.3892/mco.2020.2115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to serve important roles in a variety of human tumor types. The lncRNA small nucleolar RNA host gene 7 (SNHG7) is associated with a variety of cancer types, such as esophageal cancer, breast cancer and gastric neoplasia. Based on previous studies that examined SNHG7 expression in tumors, it has become clear that SNHG7 modulates tumorigenesis and cancer progression by acting as a competing endogenous RNA. SNHG7 can sponge tumor-suppressive microRNAs and regulate downstream signaling pathways. In addition, overexpression of SNHG7 is associated with the clinical characteristics of patients with cancer by regulating cellular proliferation, invasion and metastasis and by inhibiting apoptosis via a variety of mechanisms of action. The function of SNHG7 in tumorigenesis and cancer progression indicates that it can potentially act as a novel therapeutic target or a diagnostic biomarker for cancer therapy or detection, respectively.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Bing Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|