1
|
Tanabe M, Kawano Y, Inoue A, Miyoshi K, Furutani H, Ihara K, Higashi M, Ito K. Image quality in three-dimensional (3D) contrast-enhanced dynamic magnetic resonance imaging of the abdomen using deep learning denoising technique: intraindividual comparison between T1-weighted sequences with compressed sensing and with a modified Fast 3D mode wheel. Jpn J Radiol 2025; 43:455-462. [PMID: 39503820 PMCID: PMC11868291 DOI: 10.1007/s11604-024-01687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/21/2024] [Indexed: 02/28/2025]
Abstract
PURPOSE To assess the image quality of a modified Fast three-dimensional (Fast 3D) mode wheel with sequential data filling (mFast 3D wheel) combined with a deep learning denoising technique (Advanced Intelligent Clear-IQ Engine [AiCE]) in contrast-enhanced (CE) 3D dynamic magnetic resonance (MR) imaging of the abdomen during a single breath hold (BH) by intra-individual comparison with compressed sensing (CS) with AiCE. METHODS Forty-two patients who underwent multiphasic CE dynamic MRI obtained with both mFast 3D wheel using AiCE and CS using AiCE in the same patient were retrospectively included. The conspicuity, artifacts, image quality, signal intensity ratio (SIR), signal-to-noise ratio (SNR), contrast ratio (CR), and contrast enhancement ratio (CER) of the organs were compared between these 2 sequences. RESULTS Conspicuity, artifacts, and overall image quality were significantly better in the mFast 3D wheel using AiCE than in the CS with AiCE (all p < 0.001). The SNR of the liver in CS with AiCE was significantly better than that in the mFast 3D wheel using AiCE (p < 0.01). There were no significant differences in the SIR, CR, and CER between the two sequences. CONCLUSION A mFast 3D wheel using AiCE as a deep learning denoising technique improved the conspicuity of abdominal organs and intrahepatic structures and the overall image quality with sufficient contrast enhancement effects, making it feasible for BH 3D CE dynamic MR imaging of the abdomen.
Collapse
Affiliation(s)
- Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yosuke Kawano
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Atsuo Inoue
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keisuke Miyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Haruki Furutani
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
2
|
Louis M, Akhtar A, Gherasim C, Singh H. A unique intersection: Exploring an exophytic, pedunculated hepatic hemangioma with gastric connection in a case report. Radiol Case Rep 2024; 19:4127-4132. [PMID: 39114865 PMCID: PMC11305257 DOI: 10.1016/j.radcr.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatic hemangiomas are commonly benign liver tumors, typically asymptomatic and predominantly located in the right lobe. This case report details an exceptional instance of a left-lobe hepatic hemangioma manifesting as an exophytic, pedunculated mass resembling a gastric tumor. A 77-year-old woman with a history of melanoma presented with a mass incidentally discovered during evaluations for chest pain. Advanced imaging techniques, including computed tomography (CT) and endoscopic ultrasound (EUS), identified this mass as a benign, pedunculated hemangioma extending from the left hepatic lobe toward the gastric fundus. Given the tumor's benign nature and the patient's lack of symptoms, a conservative management approach was adopted. This case emphasizes the importance of accurate imaging and diagnostic assessment in managing atypical hepatic hemangiomas, highlighting the need to carefully consider rare growth patterns and locations in differential diagnoses to avoid unnecessary interventions. Such cases reinforce the complexity of diagnosing and managing unusual presentations of common benign tumors.
Collapse
Affiliation(s)
- Mena Louis
- Northeast Georgia Medical Center, General Surgery Department, Gainesville, GA 30501, USA
| | - Adeel Akhtar
- Northeast Georgia Medical Center, Internal Medicine Department, Gainesville, GA 30501, USA
| | - Claudia Gherasim
- Northeast Georgia Medical Center, Pathology Department, Gainesville, GA 30501, USA
| | - Hardeep Singh
- Northeast Georgia Medical Center, GME Research Program, Gainesville, GA 30501, USA
| |
Collapse
|
3
|
Yun SM, Hong SB, Lee NK, Kim S, Ji YH, Seo HI, Park YM, Noh BG, Nickel MD. Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI. Abdom Radiol (NY) 2024; 49:1861-1869. [PMID: 38512517 DOI: 10.1007/s00261-024-04236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE To evaluated the impact of a deep learning (DL)-based image reconstruction on multi-arterial-phase magnetic resonance imaging (MA-MRI) for small hypervascular hepatic masses in patients who underwent gadoxetic acid-enhanced liver MRI. METHODS We retrospectively enrolled 55 adult patients (aged ≥ 18 years) with small hepatic hypervascular mass (≤ 3 cm) between December 2022 and February 2023. All patients underwent MA-MRI, subsequently reconstructed with a DL-based application. Qualitative assessment with Linkert scale including motion artifact (MA), liver edge (LE), hepatic vessel clarity (HVC) and image quality (IQ) was performed. Quantitative image analysis including signal to noise ratio (SNR), contrast to noise ratio (CNR) and noise was performed. RESULTS On both arterial phases (APs), all qualitative parameters were significantly improved after DL-based image reconstruction. (LE on 1st AP, 1.22 vs 1.61; LE on 2nd AP, 1.21 vs 1.65; HVC on 1st AP, 1.24 vs 1.39; HVC on 2nd AP, 1.24 vs 1.44; IQ on 1st AP, 1.17 vs 1.45; IQ on 2nd AP, 1.17 vs 1.47, all p values < 0.05). The SNR, CNR and noise were significantly improved after DL-based image reconstruction. (SNR on AP1, 279.08 vs 176.14; SNR on AP2, 334.34 vs 199.24; CNR on AP1, 106.09 vs 64.14; CNR on AP2, 129.66 vs 73.73; noise on AP1, 1.51 vs 2.33; noise on AP2, 1.45 vs 2.28, all p values < 0.05). CONCLUSIONS Gadoxetic acid-enhanced MA-MRI with DL-based image reconstruction improved the qualitative and quantitative parameters. Despite the short acquisition time, high-quality MA-MRI is now achievable.
Collapse
Affiliation(s)
- Su Min Yun
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.
- Department of Radiology and Research Institute of Radiology, Pusan National University Hospital, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Korea.
| | - Nam Kyung Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Yea Hee Ji
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Young Mok Park
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Byeong Gwan Noh
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | | |
Collapse
|
4
|
Jiang J, Yang D, Yang Z, Han X, Xu L, Wang Y, Wang X, Yang Z, Xu H. The timing phase affected the inconsistency of APHE subtypes of liver observations in patients at risk for HCC on the multi-hepatic arterial phase imaging. Abdom Radiol (NY) 2024; 49:1092-1102. [PMID: 38195799 DOI: 10.1007/s00261-023-04096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE To investigate whether liver observations in patients at risk for hepatocellular carcinoma (HCC) display inconsistent arterial phase hyperenhancement (APHE) subtypes on the multi-hepatic arterial phase imaging (mHAP) and to further investigate factors affecting inconsistent APHE subtype of observations on mHAP imaging. METHODS From April 2018 to June 2021, a total of 141 patients at high risk of HCC with 238 liver observations who underwent mHAP MRI acquisitions were consecutively included in this retrospective study. Two experienced radiologists reviewed individual arterial phase imaging independently and assessed the enhancement pattern of each liver observation according to LI-RADS. Another two experienced radiologists identified and recorded the genuine timing phase of each phase independently. When a disagreement appeared between the two radiologists, another expert participated in the discussion to get a final decision. A separate descriptive analysis was used for all observations scored APHE by the radiologists. The Kappa coefficient was used to determine the agreement between the two radiologists. Univariate analysis was performed to investigate the factors affecting inconsistent APHE subtype of liver observations on mHAP imaging. RESULTS The interobserver agreement was substantial to almost perfect agreement on the assessment of timing phase (κ = 0.712-0.887) and evaluation of APHE subtype (κ = 0.795-0.901). A total of 87.8% (209/238) of the observations showed consistent nonrim APHE and 10.2% (24/238) of the observations showed consistent rim APHE on mHAP imaging. A total of 2.1% (5/238) of the liver observations were considered inconsistent APHE subtypes, and all progressed nonrim to rim on mHAP imaging. 87.9% (124/141) of the mHAP acquisitions were all arterial phases and 12.1% (17/141) of the mHAP acquisitions obtained both the arterial phase and portal venous phase. Univariate analysis was performed and found that the timing phase of mHAP imaging affected the consistency of APHE subtype of liver observations. When considering the timing phase and excluding the portal venous phase acquired by mHAP imaging, none of the liver observations showed inconsistent APHE subtypes on mHAP imaging. CONCLUSION The timing phase which mHAP acquisition contained portal venous phase affected the inconsistency of APHE subtype of liver observations on mHAP imaging. When evaluating the APHE subtype of liver observations, it's necessary to assess the timing of each phase acquired by the mHAP technique at first.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenzhen Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xinjun Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Lixue Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yuxin Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xiaopei Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
5
|
Castagnoli F, Faletti R, Inchingolo R, Villanacci A, Ruggeri V, Zacà D, Koh DM, Grazioli L. Intra-patient and inter-observer image quality analysis in liver MRI study with gadoxetic acid using two different multi-arterial phase techniques. Br J Radiol 2024; 97:868-873. [PMID: 38400772 PMCID: PMC11027306 DOI: 10.1093/bjr/tqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
PURPOSE To evaluate intra-patient and interobserver agreement in patients who underwent liver MRI with gadoxetic acid using two different multi-arterial phase (AP) techniques. METHODS A total of 154 prospectively enrolled patients underwent clinical gadoxetic acid-enhanced liver MRI twice within 12 months, using two different multi-arterial algorithms: CAIPIRINHA-VIBE and TWIST-VIBE. For every patient, breath-holding time, body mass index, sex, age were recorded. The phase without contrast media and the APs were independently evaluated by two radiologists who quantified Gibbs artefacts, noise, respiratory motion artefacts, and general image quality. Presence or absence of Gibbs artefacts and noise was compared by the McNemar's test. Respiratory motion artefacts and image quality scores were compared using Wilcoxon signed rank test. Interobserver agreement was assessed by Cohen kappa statistics. RESULTS Compared with TWIST-VIBE, CAIPIRINHA-VIBE images had better scores for every parameter except higher noise score. Triple APs were always acquired with TWIST-VIBE but failed in 37% using CAIPIRINHA-VIBE: 11% have only one AP, 26% have two. Breath-holding time was the only parameter that influenced the success of multi-arterial techniques. TWIST-VIBE images had worst score for Gibbs and respiratory motion artefacts but lower noise score. CONCLUSION CAIPIRINHA-VIBE images were always diagnostic, but with a failure of triple-AP in 37%. TWIST-VIBE was successful in obtaining three APs in all patients. Breath-holding time is the only parameter which can influence the preliminary choice between CAIPIRINHA-VIBE and TWIST-VIBE algorithm. ADVANCES IN KNOWLEDGE If the patient is expected to perform good breath-holds, TWIST-VIBE is preferable; otherwise, CAIPIRINHA-VIBE is more appropriate.
Collapse
Affiliation(s)
- Francesca Castagnoli
- Department of Radiology, Royal Marsden Hospital, Sutton SM2 5PT, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton SM2 5NG, United Kingdom
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10124, Italy
| | - Riccardo Inchingolo
- Interventional Radiology Unit, “F. Miulli” General Regional Hospital, Acquaviva delle Fonti 70021, Italy
| | | | - Valeria Ruggeri
- Department of I Radiology, ASST Spedali Civili, Brescia 25123, Italy
| | | | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Sutton SM2 5PT, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton SM2 5NG, United Kingdom
| | - Luigi Grazioli
- Department of I Radiology, ASST Spedali Civili, Brescia 25123, Italy
| |
Collapse
|
6
|
Kim JH, Yoon JH, Kim SW, Park J, Bae SH, Lee JM. Application of a deep learning algorithm for three-dimensional T1-weighted gradient-echo imaging of gadoxetic acid-enhanced MRI in patients at a high risk of hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:738-747. [PMID: 38095685 DOI: 10.1007/s00261-023-04124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 03/05/2024]
Abstract
PURPOSE To evaluate the efficacy of a vendor-specific deep learning reconstruction algorithm (DLRA) in enhancing image quality and focal lesion detection using three-dimensional T1-weighted gradient-echo images in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) in patients at a high risk of hepatocellular carcinoma. MATERIALS AND METHODS In this retrospective analysis, 83 high-risk patients with hepatocellular carcinoma underwent gadoxetic acid-enhanced liver MRI using a 3-T scanner. Triple arterial phase, high-resolution portal venous phase, and high-resolution hepatobiliary phase images were reconstructed using conventional reconstruction techniques and DLRA (AIRTM Recon DL; GE Healthcare) for subsequent comparison. Image quality and solid focal lesion detection were assessed by three abdominal radiologists and compared between conventional and DL methods. Focal liver lesion detection was evaluated using figures of merit (FOMs) from a jackknife alternative free-response receiver operating characteristic analysis on a per-lesion basis. RESULTS DLRA-reconstructed images exhibited significantly improved overall image quality, image contrast, lesion conspicuity, vessel conspicuity, and liver edge sharpness and reduced subjective image noise, ringing artifacts, and motion artifacts compared to conventionally reconstructed images (all P < 0.05). Although there was no significant difference in the FOMs of non-cystic focal liver lesions between the conventional and DL methods, DLRA-reconstructed images showed notably higher pooled sensitivity than conventionally reconstructed images (P < 0.05) in all phases and higher detection rates for viable post-treatment HCCs in the arterial and hepatobiliary phases (all P < 0.05). CONCLUSIONS Implementing DLRA can enhance the image quality in 3D T1-weighted gradient-echo sequences of gadoxetic acid-enhanced liver MRI examinations, leading to improved detection of viable post-treatment HCCs.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Se Woo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Seong Hwan Bae
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 28, Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Bouyer T, Roux M, Jacquemin S, Dioguardi Burgio M, Sutter O, Laurent-Croisé V, Lonjon J, Bricault I, Trillaud H, Rode A, Aubé C, Paisant A. Detection of arterial phase hyperenhancement of small hepatocellular carcinoma with MRI: Comparison between single arterial and multi-arterial phases and between extracellular and hepatospecific contrast agents. Diagn Interv Imaging 2023; 104:477-484. [PMID: 37211446 DOI: 10.1016/j.diii.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE The purpose of this study was to compare the detection rate of arterial phase hyperenhancement (APHE) in small hepatocellular carcinoma (HCC) between single arterial phase (single-AP) and triple hepatic arterial (triple-AP) phase MRI and between extracellular (ECA) and hepato-specific (HBA) contrast agents. MATERIALS AND METHODS A total of 109 cirrhotic patients with 136 HCCs from seven centers were included. There were 93 men and 16 women, with a mean age of 64.0 ± 8.9 (standard deviation) years (range: 42-82 years). Each patient underwent both ECA-MRI and HBA (gadoxetic acid)-MRI examination within one month of each other. Each MRI examination was retrospectively reviewed by two readers blinded to the second MRI examination. The sensitivities of triple- and single-AP for the detection of APHE were compared, and each phase of the triple-AP sequence was compared with the other two. RESULTS No differences in APHE detection were found between single-AP (97.2%; 69/71) and triple-AP (98.5%; 64/65) (P > 0.99) at ECA-MRI. No differences in APHE detection were found between single-AP (93%; 66/71) and triple-AP (100%; 65/65) at HBA-MRI (P = 0.12). Patient age, size of the nodules, use of automatic triggering, type of contrast agent, and type of sequence were not significantly associated with APHE detection. The reader was the single variable significantly associated with APHE detection. For triple-AP, best APHE detection rate was found for early and middle-AP images compared to late-AP images (P = 0.001 and P = 0.003). All APHEs were detected with the combination of early-AP and middle-AP images, except one that was detected on late-AP images by one reader. CONCLUSION Our study suggests that both single- and triple-AP can be used in liver MRI for the detection of small HCC especially when using ECA. Early AP and middle-AP are the most efficient phases and should be preferred for detecting APHE, regardless of the contrast agent used.
Collapse
Affiliation(s)
- Thomas Bouyer
- Department of Radiology, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France.
| | - Marine Roux
- Laboratoire HIFIH, UPRES 3859, SFR 4208, Université d'Angers, 49045 Angers, France
| | - Sarah Jacquemin
- Department of Radiology, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Marco Dioguardi Burgio
- Department of Radiology, Hôpital Beaujon, APHP Nord, 92110 Clichy, France; Université de Paris, Centre de recherche sur l'inflammation, INSERM, U1149, CNRS, ERL8252, Paris, 75018, France
| | - Olivier Sutter
- Department of Radiology, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis (AP-HP), 93140 Bondy, France
| | - Valérie Laurent-Croisé
- Department of Radiology, Centre Hospitalier Universitaire de Nancy, Hôpital de Brabois, 54500 Vandœuvre-lès-Nancy, France
| | - Julie Lonjon
- Department of Radiology, Centre Hospitalier Universitaire Saint Eloi, 34090 Montpellier, France
| | - Ivan Bricault
- Université Grenoble Alpes, CNRS, 38400 Grenoble, France; Department of Radiology, Centre Hospitalier Universitaire Grenoble Alpes, 38700 Grenoble, France
| | - Hervé Trillaud
- Department of Radiology, Centre Hospitalier Universitaire de Bordeaux, 33000 Bordeaux, France
| | - Agnès Rode
- Department of Radiology, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Centre Hospitalier Universitaire, 69317 Lyon Cedex 04, France
| | - Christophe Aubé
- Department of Radiology, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France; Laboratoire HIFIH, UPRES 3859, SFR 4208, Université d'Angers, 49045 Angers, France
| | - Anita Paisant
- Department of Radiology, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France; Laboratoire HIFIH, UPRES 3859, SFR 4208, Université d'Angers, 49045 Angers, France
| |
Collapse
|
8
|
Bae JS, Lee JY, Suh KS, Hong SK, Yoon JH, Kim YJ, Yu SJ, Lee JH, Cho EJ, Lee YB, Han JK. Characterization of hepatobiliary phase hypointense nodules without arterial phase hyperenhancement on gadoxetic acid-enhanced MRI via contrast-enhanced ultrasound using perfluorobutane. Abdom Radiol (NY) 2023; 48:2321-2330. [PMID: 37097451 DOI: 10.1007/s00261-023-03901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Hepatobiliary phase (HBP) hypointense nodules without arterial phase hyperenhancement (APHE) on gadoxetic acid-enhanced MRI (GA-MRI) may be nonmalignant cirrhosis-associated nodules or hepatocellular carcinomas (HCCs). We aimed to characterize HBP hypointense nodules without APHE on GA-MRI by performing contrast-enhanced ultrasound using perfluorobutane (PFB-CEUS). METHODS In this prospective, single-center study, participants at high-risk of HCC having HBP hypointense nodules without APHE at GA-MRI were enrolled. All participants underwent PFB-CEUS; if APHE and late, mild washout or washout in the Kupffer phase were present, the diagnosis of HCC was established according to the v2022 Korean guidelines. The reference standard consisted of histopathology or imaging. The sensitivity, specificity, and positive/negative predictive values of PFB-CEUS for detecting HCC were calculated. Associations between clinical/imaging features and the diagnosis of HCC were evaluated with logistic regression analyses. RESULTS In total, 67 participants (age, 67.0 years ± 8.4; 56 men) with 67 HBP hypointense nodules without APHE (median size, 1.5 cm [range, 1.0-3.0 cm]) were included. The prevalence of HCC was 11.9% (8/67). The sensitivity, specificity, and positive and negative predictive values of PFB-CEUS for detecting HCC were 12.5%(1/8), 96.6%(57/59), 33.3%(1/3) and 89.1%(57/64), respectively. Mild-moderate T2 hyperintensity on GA-MRI (odds ratio, 5.756; P = 0.042) and washout in the Kupffer phase on PFB-CEUS (odds ratio, 5.828; P = 0.048) were independently associated with HCC. CONCLUSION Among HBP hypointense nodules without APHE, PFB-CEUS was specific for detecting HCC, which had a low prevalence. Mild-moderate T2 hyperintensity on GA-MRI and washout in the Kupffer phase on PFB-CEUS may be useful to detect HCC in those nodules.
Collapse
Affiliation(s)
- Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Yun Bin Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
9
|
Multiarterial Phase Acquisition in Gadoxetic Acid-Enhanced Liver MRI for the Detection of Hypervascular Hepatocellular Carcinoma in High-Risk Patients: Comparison of Compressed Sensing Versus View Sharing Techniques. Invest Radiol 2023; 58:139-147. [PMID: 35976759 DOI: 10.1097/rli.0000000000000910] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aim of this study was to compare compressed sensing (CS) and view sharing (VS) techniques for single breath-hold multiarterial phase imaging with respect to image quality and focal liver observation detectability during gadoxetic acid-enhanced magnetic resonance imaging in patients at high risk for hepatocellular carcinoma (HCC). MATERIALS AND METHODS A total of 385 patients who underwent gadoxetic acid-enhanced magnetic resonance imaging, including triple arterial phases using either CS (n = 224) or VS (n = 161) techniques, were retrospectively included. Among them, 117 patients had 171 focal liver observations (median diameter, 1.3 cm), which were classified according to Liver Imaging Reporting and Data System version 2018. The acquisition rate of optimally timed late arterial phase (LAP) was assessed, and image quality, including respiratory motion artifact and observation conspicuity, was rated on a 4-point scale by 3 radiologists. The Mann-Whitney U test and nonparametric test for repeated measures data were used for image quality and observation conspicuity analysis. The jackknife alternative free-response receiver operating characteristics method was used to compare the observation detectability between the 2 techniques. RESULTS The CS technique showed significantly higher acquisition rate of optimally timed LAP without transient severe motion (82.1% [184/224] vs 71.4% [115/161]; P = 0.013) than the VS technique. The CS technique also demonstrated significantly improved overall image quality (3.42 ± 0.70 vs 2.97 ± 0.61; P < 0.001) compared with the VS technique. Regarding the detection of hyperenhancing observations, there was no significant difference between the figure of merits of CS and VS techniques (0.660 vs 0.665; P = 0.890). However, the CS technique showed a higher detection rate in Liver Imaging Reporting and Data System M (LR-M, probably or definitely malignant but not HCC specific) observations than the VS technique (100.0% [9/9] vs 44.4% [8/18]; P = 0.009). CONCLUSION The CS technique tended to provide optimally timed LAP without transient severe motion and demonstrated greater detection rate of LR-M observations than the VS technique in patients at high risk of HCC.
Collapse
|
10
|
Young Park J, Min Lee S, Sub Lee J, Chang W, Hee Yoon J. Free-breathing dynamic T1WI using compressed sensing-golden angle radial sparse parallel imaging for liver MRI in patients with limited breath-holding capability. Eur J Radiol 2022; 152:110342. [DOI: 10.1016/j.ejrad.2022.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022]
|
11
|
Clinical usefulness of multiple arterial-phase images in gadoxetate disodium-enhanced magnetic resonance imaging: a systematic review and meta-analysis. Eur Radiol 2022; 32:5413-5423. [PMID: 35192009 DOI: 10.1007/s00330-022-08620-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The multiple arterial-phase (AP) technique was introduced for liver MRI, but it is not really known if multiple AP MRI (MA-MRI) improves image quality and lesion detection rate on gadoxetate disodium-enhanced MRI in comparison with single AP MRI (SA-MRI). We aimed to determine the clinical usefulness of MA-MRI in comparison with SA-MRI. METHODS Original articles reporting the percentage of adequate AP imaging and the lesion detection rate on gadoxetate disodium-enhanced MA-MRI were identified in PubMed, EMBASE, and Cochrane Library databases. The pooled percentage of adequate AP imaging and lesion detection rate were calculated using random-effects meta-analysis of single proportions. Subgroup analysis was performed to explain causes of study heterogeneity, and publication bias was evaluated using Egger's test. RESULTS Of 772 articles screened, 22 studies in 12 articles were included: 18 studies (ten MA-MRI and eight SA-MRI) suitably defined the percentage of adequate AP imaging and four (three MA-MRI and one SA-MRI) defined the lesion detection rate. MA-MRI had 16.1% higher pooled percentage of adequate AP imaging than SA-MRI (94.8% vs. 78.7%, p < 0.01). MA-MRI additionally detected 33.2% of lesions than SA-MRI (83.2% vs. 50.0%, p = 0.06). Substantial study heterogeneity was found in MA-MRI, and the definition of adequate AP imaging, lesion characteristics, and reference standards were significant factors affecting study heterogeneity (p ≤ 0.02). Significant publication bias was found in MA-MRI (p < 0.01) but not in SA-MRI studies (p = 0.87). CONCLUSIONS Gadoxetate disodium-enhanced MA-MRI may be more clinically useful than SA-MRI, but further study is necessary to validate this finding because of study heterogeneity and publication bias. KEY POINTS • Multiple arterial-phase MRI (MA-MRI) had a 16.1% higher pooled percentage of adequate AP imaging than single arterial-phase MRI (SA-MRI) (94.8% vs. 78.7%, p < 0.01). • MA-MRI additionally detected an extra 33.2% of lesions compared with SA-MRI (83.2% vs. 50.0%, p = 0.06). • Substantial study heterogeneity and significant publication bias were found across MA-MRI studies.
Collapse
|
12
|
Kim DW, Choi SH, Park T, Kim SY, Lee SS, Byun JH. Transient Severe Motion Artifact on Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Invest Radiol 2022; 57:62-70. [PMID: 34224484 DOI: 10.1097/rli.0000000000000806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to determine the incidence of transient severe motion artifact (TSM) on arterial phase gadoxetic acid-enhanced magnetic resonance imaging of the liver and to investigate the causes of heterogeneity in the published literature. MATERIALS AND METHODS Original studies reporting the incidence of TSM were identified in searches of PubMed, Embase, and Cochrane Library databases. The pooled incidence of TSM was calculated using random-effects meta-analysis of single proportions. Subgroup analyses were conducted to explore causes of heterogeneity. RESULTS A total of 24 studies were finally included (single arterial phase, 19 studies with 3065 subjects; multiple arterial phases, 8 studies with 2274 subjects). Studies using single arterial phase imaging reported individual TSM rates varying from 4.8% to 26.7% and a pooled incidence of TSM of 13.0% (95% confidence interval, 10.3%-16.2%), which showed substantial study heterogeneity. The pooled incidence of TSM in the studies using multiple arterial phase imaging was 3.2% (95% confidence interval, 1.9%-5.2%), which was significantly less than in those studies using single arterial phase imaging (P < 0.001). In the subgroup analysis, the geographical region of studies and the definition of TSM were found to be causes of heterogeneity. The incidence of TSM was higher in studies with Western populations from Europe or North America than in those with Eastern (Asia/Pacific) populations (16.0% vs 8.8%, P = 0.005). Regarding the definition of TSM, the incidence of TSM was higher when a 4-point scale was used for its categorization than when a 5-point scale was used (20.0% vs 11.0%, P = 0.008), and a definition considering motion artifact on phases other than arterial phase imaging lowered the incidence of TSM compared with it being defined only on arterial phase imaging (11.3% vs 20.3%, P = 0.018). CONCLUSIONS The incidence of TSM on arterial phase images varied across studies and was associated with the geographical region of studies and the definition of TSM. Careful interpretation of results reporting TSM might therefore be needed.
Collapse
Affiliation(s)
- Dong Wook Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Utility of Radial Scanning for the Identification of Arterial Hypervascularity of Hepatocellular Carcinoma on Gadoxetic Acid-Enhanced Magnetic Resonance Images. J Comput Assist Tomogr 2021; 45:359-366. [PMID: 33661153 DOI: 10.1097/rct.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study aimed to compare the accuracy of assessing the arterial hypervascularity of hepatocellular carcinoma (HCC) on dynamic computed tomography (CT) scans and gadoxetic acid (EOB)-enhanced magnetic resonance imaging (MRI) scans performed with radial sampling. METHODS We studied the images of 40 patients with hypervascular HCC. A radiologist recorded the standard deviation of the attenuation (or the signal intensity [SI]) in subcutaneous fat tissue as the image noise (N) and calculated the contrast-to-noise ratio (CNR) as follows: (CNR) = (n-ROIT - n-ROIL)/N, where n-ROIT is the mean attenuation (or SI) of the tumor divided by the mean attenuation (or SI) of the aorta and n-ROIL is the mean attenuation (or SI) of the liver parenchyma divided by the mean attenuation (or SI) of the aorta. RESULTS The CNR was significantly higher on EOB-enhanced MRI than on dynamic CT scans. CONCLUSIONS For the assessment of HCC vascularity, EOB-enhanced MRI scans acquired with radial sampling were more accurate than dynamic CT images.
Collapse
|
14
|
Ippolito D, Maino C, Pecorelli A, Riva L, Querques G, Talei Franzesi C, Sironi S. Influence of injection rate in determining the development of artifacts during the acquisition of dynamic arterial phase in Gd-EOB-DTPA MRI studies. MAGMA (NEW YORK, N.Y.) 2021; 34:133-140. [PMID: 32562201 DOI: 10.1007/s10334-020-00857-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess whether different Gd-EOB-DTPA injection rates could influence the development of artifacts during the arterial phase of liver MRI studies. MATERIALS AND METHODS All Gd-EOB-DTPA liver MRI studies performed for different clinical indications at a single tertiary referral center were retrospectively evaluated. Each examination was acquired on a 1.5 T scanner with T1 In- and Out-of-Phase, T2 with and without fat-saturation, DWI, and 3D-T1 fat-sat dynamic sequences. Patients were divided into two groups according to the injection rate (1 ml/s and 1.5 ml/s). A single radiologist recorded the presence or absence of artifacts during different acquisition phases, respectively: (1) all examination; (2) only during the arterial phase; (3) only during the portal-venous phase; (4) both in arterial and portal-venous phases. From a total of 748 MRI studies performed, 229 were excluded due to the presence of artifacts during the entire examination. The remaining 519 MRI studies were divided into two groups according to the injection rate. RESULTS The first group (flow rate = 1 ml/s) was composed by 312 (60.1%) patients and the second group (flow rate = 1.5 ml/s) by 207 (39.9%) patients. In the first group, 2 (0.6%) patients showed artifacts in all dynamic sequences; 13 (4%) only in the arterial phase, 16 (5%) only in the portal-venous phase, and 38 (12%) both in arterial and portal-venous phases; a total of 243 (78%) showed no artifacts. In the second group, 3 (1.5%) patients had artifacts in all dynamic sequences, 82 (40%) only in the arterial phase, 20 (10%) only in the portal-venous phase, and 53 (25%) both in arterial and portal-venous phases; a total of 49 (23.5%) showed no artifacts. A significant difference between the two groups regarding the absence of artifacts in all examination and the presence of artifacts only during the arterial phase was found (p < 0.001). CONCLUSION The development of artifacts during the arterial phase of Gd-EOB-DTPA liver MRI studies could be related to the injection rate and its reduction may help to decrease the incidence of artifacts.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Diagnostic Radiology, University of Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy.
| | - Cesare Maino
- Department of Diagnostic Radiology, University of Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, University of Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Luca Riva
- Department of Diagnostic Radiology, University of Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Giulia Querques
- Department of Diagnostic Radiology, University of Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Cammillo Talei Franzesi
- Department of Diagnostic Radiology, University of Milano-Bicocca, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Sandro Sironi
- Department of Diagnostic Radiology, Papa Giovanni XIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy
| |
Collapse
|
15
|
Ricke J, Steffen IG, Bargellini I, Berg T, Bilbao Jaureguizar JI, Gebauer B, Iezzi R, Loewe C, Karçaaltincaba M, Pech M, Sengel C, van Delden O, Vandecaveye V, Zech CJ, Seidensticker M. Gadoxetic acid-based hepatobiliary MRI in hepatocellular carcinoma. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2020; 2:100173. [PMID: 33103093 PMCID: PMC7578758 DOI: 10.1016/j.jhepr.2020.100173] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Background & Aims SORAMIC is a prospective phase II randomised controlled trial in hepatocellular carcinoma (HCC). It consists of 3 parts: a diagnostic study and 2 therapeutic studies with either curative ablation or palliative Yttrium-90 radioembolisation combined with sorafenib. We report the diagnostic cohort study aimed to determine the accuracy of gadoxetic acid-enhanced magnetic resonance imaging (MRI), including hepatobiliary phase (HBP) imaging features compared with contrast-enhanced computed tomography (CT). The primary objective was the accuracy of treatment decisions stratifying patients for curative or palliative (non-ablation) treatment. Methods Patients with clinically suspected HCC underwent gadoxetic acid-enhanced MRI (HBP MRI, including dynamic MRI) and contrast-enhanced CT. Blinded read of the image data was performed by 2 reader groups (radiologists, R1 and R2). A truth panel with access to all clinical data and follow-up imaging served as reference. Imaging criteria for curative ablation were defined as up to 4 lesions <5 cm and absence of macrovascular invasion. The primary endpoint was non-inferiority of HBP MRI vs. CT in a first step and superiority in a second step. Results The intent-to-treat population comprised 538 patients. Treatment decisions matched the truth panel assessment in 83.3% and 81.2% for HBP MRI (R1 and R2), and 73.4% and 70.8% for CT. Non-inferiority and superiority (second step) of HBP MRI vs. CT were demonstrated (odds ratio 1.14 [1.09–1.19]). HBP MRI identified patients with >4 lesions significantly more frequently than CT. Conclusions In HCC, HBP MRI provided a more accurate decision than CT for a curative vs. palliative treatment strategy. Lay summary Patients with hepatocellular carcinoma are allocated to curative or palliative treatment according to the stage of their disease. Hepatobiliary imaging using gadoxetic acid-enhanced MRI is more accurate than CT for treatment decision-making. Comparison of gadoxetic acid-enhanced MRI vs. contrast-enhanced multi-slice CT to stratify patients with suspected HCC. Clinical decision-making was shown to be significantly more accurate with gadoxetic acid-enhanced hepatobiliary MRI than CT. To the best of our knowledge, this is the first study linking a clinical decision endpoint to hepatobiliary MRI criteria for HCC diagnosis. The results of our international multicentre trial could guide recommendations on the diagnostic management of HCC.
Collapse
Key Words
- APASL, Asian Pacific Association for the Study of the Liver
- BCLC, Barcelona Clinic Liver Cancer
- CT, computed tomography
- DWI, diffusion-weighted imaging
- GEE, generalised estimating equation
- GRE, gradient echo
- Gadoxetic acid
- HBP, hepatobiliary phase
- HCC, hepatocellular carcinoma
- HGDN, high-grade dysplastic nodule
- Hepatocellular carcinoma
- ITT, intent to treat
- MRI, magnetic resonance imaging
- Magnetic resonance imaging
- OR, odds ratio
- PP, per protocol
- RFA, radio-frequency ablation
- SORAMIC trial
- SORAMIC, Sorafenib and Micro-Therapy Guided by Gadolinium-EOB-DTPA-Enhanced MRI
- TSE, turbo spin echo
Collapse
Affiliation(s)
- Jens Ricke
- Department of Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ingo G Steffen
- Department of Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Irene Bargellini
- Department of Interventional Radiology, Pisa University Hospital, Pisa, Italy
| | - Thomas Berg
- Klinik und Poliklinik für Gastroenterologie, Sektion Hepatologie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | | | - Bernhard Gebauer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roberto Iezzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia, Rome, Italy
| | - Christian Loewe
- Section of Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Maciej Pech
- Department of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - Christian Sengel
- Radiologie interventionnelle vasculaire et percutanée, CHU de Grenoble, Grenoble, France
| | - Otto van Delden
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Christoph J Zech
- Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Max Seidensticker
- Department of Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
16
|
Kim JH, Yoon JH, Joo I, Lee JM. Evaluation of Primary Liver Cancers Using Hepatocyte-Specific Contrast-Enhanced MRI: Pitfalls and Potential Tips. J Magn Reson Imaging 2020; 53:655-675. [PMID: 32700807 DOI: 10.1002/jmri.27213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
When radiologists interpret hepatic focal lesions seen on dynamic magnetic resonance imaging (MRI) scans, it is important not only to distinguish malignant lesions from benign ones but also to distinguish nonhepatocellular carcinoma (HCC) malignancies from HCCs. In addition, most major guidelines, including those of the American Association for the Study of Liver Disease, European Association for the Study of the Liver, and Korean Liver Cancer Association and National Cancer Center, allow for the noninvasive imaging diagnosis of HCC in at-risk patients. However, ~40% of HCC cases show atypical imaging features mimicking non-HCC malignancies. Furthermore, several benign and malignant lesions, such as flash-filling hemangioma and intrahepatic mass-forming cholangiocarcinoma, frequently look like HCC. In contrast, although multiparametric MRI options, including hepatobiliary phase and diffusion-weighted imaging, provide useful information that could help address these challenges, there remain several unresolved issues with regard to the noninvasive diagnostic criteria characterizing HCC. In this article, we discuss the typical imaging features and challenging situations related to primary liver cancers in MRI, while considering how to make a correct diagnosis. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
17
|
Yoon JH, Nickel MD, Peeters JM, Lee JM. Rapid Imaging: Recent Advances in Abdominal MRI for Reducing Acquisition Time and Its Clinical Applications. Korean J Radiol 2020; 20:1597-1615. [PMID: 31854148 PMCID: PMC6923214 DOI: 10.3348/kjr.2018.0931] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in abdominal imaging. The high contrast resolution offered by MRI provides better lesion detection and its capacity to provide multiparametric images facilitates lesion characterization more effectively than computed tomography. However, the relatively long acquisition time of MRI often detrimentally affects the image quality and limits its accessibility. Recent developments have addressed these drawbacks. Specifically, multiphasic acquisition of contrast-enhanced MRI, free-breathing dynamic MRI using compressed sensing technique, simultaneous multi-slice acquisition for diffusion-weighted imaging, and breath-hold three-dimensional magnetic resonance cholangiopancreatography are recent notable advances in this field. This review explores the aforementioned state-of-the-art techniques by focusing on their clinical applications and potential benefits, as well as their likely future direction.
Collapse
Affiliation(s)
- Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
18
|
Tran AQ, Nguyen TA, Duong VT, Tran QH, Tran DN, Tran DT. MRI Simulation-based evaluation of an efficient under-sampling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:4048-4063. [PMID: 32987567 DOI: 10.3934/mbe.2020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compressive sampling (CS) has been commonly employed in the field of magnetic resonance imaging (MRI) to accurately reconstruct sparse and compressive signals. In a MR image, a large amount of encoded information focuses on the origin of the k-space. For the 2D Cartesian K-space MRI, under-sampling the frequency-encoding (kx) dimension does not affect to the acquisition time, thus, only the phase-encoding (ky) dimension can be exploited. In the traditional random under-sampling approach, it acquired Gaussian random measurements along the phaseencoding (ky) in the k-space. In this paper, we proposed a hybrid under-sampling approach; the number of measurements in (ky) is divided into two portions: 70% of the measurements are for random under-sampling and 30% are for definite under-sampling near the origin of the k-space. The numerical simulation consequences pointed out that, in the lower region of the under-sampling ratio r, both the average error and the universal image quality index of the appointed scheme are drastically improved up to 55 and 77% respectively as compared to the traditional scheme. For the first time, instead of using highly computational complexity of many advanced reconstruction techniques, a simple and efficient CS method based simulation is proposed for MRI reconstruction improvement. These findings are very useful for designing new MRI data acquisition approaches for reducing the imaging time of current MRI systems.
Collapse
Affiliation(s)
- Anh Quang Tran
- Department of Biomedical Engineering, Le Quy Don Technical University, Ha Noi, Vietnam
| | - Tien-Anh Nguyen
- Department of Physics, Le Quy Don Technical University, Ha Noi, Vietnam
| | - Van Tu Duong
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Quang-Huy Tran
- Department of Physics, Hanoi Pedagogical University 2, Vinh Phuc City, Vietnam
| | - Duc Nghia Tran
- Institute of Information Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Duc-Tan Tran
- Department of Electrical and Electronic Engineering, Phenikaa University, Ha Noi, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Ha Noi, Vietnam
| |
Collapse
|
19
|
Gatti M, Calandri M, Bergamasco L, Darvizeh F, Grazioli L, Inchingolo R, Ippolito D, Rousset S, Veltri A, Fonio P, Faletti R. Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: comparison between hepatocellular carcinoma and focal nodular hyperplasia. LA RADIOLOGIA MEDICA 2020; 125:348-355. [PMID: 31916102 DOI: 10.1007/s11547-019-01127-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE To evaluate the features of arterial enhancement pattern of focal nodular hyperplasia (FNH) and hepatocellular carcinoma (HCC) by triple-phase arterial magnetic resonance imaging (MRI). METHODS Data were retrospectively collected from 52 consecutive patients who underwent triple-phase arterial MRI using hepatocyte-specific contrast agents (Gd-EOB-DTPA) from January 2017 to October 2017, with a MR imaging diagnosis of HCC or FNH. The images were independently assessed by two blinded readers. Contrast enhancement ratio (CER) and liver-to-lesion contrast ratio (LLCR) were calculated. The lesions were classified visually and also based on the peak of LLCR into the following groups: (1) early arterial, (2) middle arterial and (3) late arterial. Data were eventually analysed using nonparametric tests. RESULTS The CER analysis showed no significant difference between HCC and FNH patients (p > 0.05). LLCRFNH were significantly higher than LLCRHCC in the early arterial (p = 0.01), but not in the middle and late arterial phases (p = 0.20 and p = 0.82, respectively). LLCRHCC presented a meaningful increase from early to middle arterial phase (p = 0.009), whereas LLCRFNH showed a decrease from middle to late arterial phase (p = 0.004). Based on the peak of LLCR, 17 (55%) FNHs were classified into early, 11 (35%) in middle and only 3 (10%) in late arterial phase groups. Similarly, 14 (34%) HCCs were categorized into early, 13 (32%) in middle and 14 (33%) in late arterial phase groups. There was a good agreement between qualitative analysis and LLCR in 85% of cases. CONCLUSION The optimal visualization of FNH has been detected in early and middle arterial phases while HCC has been best observed during middle and late arterial phases.
Collapse
Affiliation(s)
- Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Via Genova 3, 10126, Turin, Italy.
| | - Marco Calandri
- Department of Oncology, Radiology Unit, University of Torino, Turin, Italy
| | - Laura Bergamasco
- Department of Surgical Sciences, Radiology Unit, University of Turin, Via Genova 3, 10126, Turin, Italy
| | - Fatemeh Darvizeh
- Department of Surgical Sciences, Radiology Unit, University of Turin, Via Genova 3, 10126, Turin, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia "Spedali Civili", P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, 75100, Matera, Italy
| | - Davide Ippolito
- School of Medicine, University of Milano-Bicocca, Milan, Italy
- Department of Diagnostic Radiology, H. S. Gerardo Monza, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Stefano Rousset
- Department of Surgical Sciences, Radiology Unit, University of Turin, Via Genova 3, 10126, Turin, Italy
| | - Andrea Veltri
- Department of Oncology, Radiology Unit, University of Torino, Turin, Italy
| | - Paolo Fonio
- Department of Surgical Sciences, Radiology Unit, University of Turin, Via Genova 3, 10126, Turin, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Via Genova 3, 10126, Turin, Italy
| |
Collapse
|
20
|
Wei Y, Deng L, Yuan Y, Huang Z, He X, Wei X, Yang H, Song B. Gadoxetate acid disodium-enhanced MRI: Multiple arterial phases using differential sub-sampling with cartesian ordering (DISCO) may achieve more optimal late arterial phases than the single arterial phase imaging. Magn Reson Imaging 2019; 61:116-123. [PMID: 31129279 DOI: 10.1016/j.mri.2019.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND To prospectively determine whether the use of a multiple arterial phase imaging (DISCO) improve the capturing rate of late arterial phase with less motion artifact than single arterial phase obtained with gadoxetate acid disodium. MATERIALS AND METHODS From 06/2017 to 10/2018, prospectively acquired data of 132 patients who underwent either single (n = 67) or multiple arterial phase (n = 65) gadoxetate acid-enhanced MR imaging were analyzed. Two readers independently assessed arterial phase timing and the degree of motion artifact using a five-point scale. The kappa test was used to determine the agreement between the two readers, χ2 or fisher exact test were used for the categorical variables and Student t-test or Mann-Whitney U test were used for the comparison of the motion artifacts. RESULTS Good to perfect inter-observer agreement was obtained for the arterial phase timing and degree of motion artifact (all kappa value >0.70). Optimal timing of arterial phase was observed in 95.4% (62/65) of multiple arterial phase compared with 73.1% (49/67) of single arterial phase (χ2 = 12.209, p < 0.001). Motion artifact score of the late arterial phase images measured using single arterial phase acquisition (3.22 ± 0.68) was significantly higher than the multiple arterial phase (2.42 ± 0.74) group (t = 5.921, p < 0.001). For the multiple arterial phase comparison, motion artifact score of the 2nd, 3rd and 4th phases were also significant reduced compared with 1st, 5th and 6th phases (all p < 0.05). CONCLUSION The use of multiple arterial phase acquisition with gadoxetate acid disodium can improve the capturing rate of well-timed late arterial phase with less motion artifact.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiaopeng He
- Department of Radiology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | | | | | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, 610041 Chengdu, China.
| |
Collapse
|
21
|
Compressed Sensing and Parallel Imaging for Double Hepatic Arterial Phase Acquisition in Gadoxetate-Enhanced Dynamic Liver Magnetic Resonance Imaging. Invest Radiol 2019; 54:374-382. [DOI: 10.1097/rli.0000000000000548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Continuous Hepatic Arterial Multiphase Magnetic Resonance Imaging During Free-Breathing. Invest Radiol 2018; 53:596-601. [DOI: 10.1097/rli.0000000000000459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging. Invest Radiol 2018; 53:52-61. [PMID: 28902723 DOI: 10.1097/rli.0000000000000409] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. MATERIALS AND METHODS In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. RESULTS Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). CONCLUSIONS Transient motion developed in 40% (23/59) of patients shortly after gadoxetic acid administration, and gated free-breathing T1WI using GRASP was able to consistently provide acceptable arterial phase imaging in patients who exhibited transient motion.
Collapse
|
24
|
Han S, Choi JI, Park MY, Choi MH, Rha SE, Lee YJ. The Diagnostic Performance of Liver MRI without Intravenous Contrast for Detecting Hepatocellular Carcinoma: A Case-Controlled Feasibility Study. Korean J Radiol 2018; 19:568-577. [PMID: 29962863 PMCID: PMC6005954 DOI: 10.3348/kjr.2018.19.4.568] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Objective To preliminarily evaluate the diagnostic performance of an unenhanced MRI for detecting hepatocellular carcinoma (HCC) with a case-control study design. Materials and Methods The case group consisted of 175 patients with initially-diagnosed HCC, who underwent a 3T liver MRI. A total of 237 HCCs were identified. The number of HCCs that were smaller than 1 cm, 1 cm ≤ and < 2 cm, and ≥ 2 cm were 19, 105, and 113, respectively. For the control group, 72 patients with chronic liver disease, who did not have HCC, were enrolled. Two radiologists independently reviewed the T2 half-Fourier acquisition single-shot turbo spin echo, T2 fast spin echos with fat saturation, T1 gradient in- and out-of-phase images, and diffusion-weighted images/apparent diffusion coefficient maps to detect HCC. Per-patient analyses were performed to evaluate the sensitivity and specificity of the non-contrast MRI for diagnosing HCC. Furthermore, the per-lesion sensitivity was also calculated according to tumor size. Results In the per-patient analyses, the sensitivity and specificity of reader 1 were 86.3% (151/175) and 87.5% (63/72), respectively; while those of reader 2 were 82.9% (145/175) and 76.4% (55/72), respectively. When excluding HCCs smaller than 1 cm, the sensitivity of reader 1 and 2 were 88.0% (147/167) and 86.2% (144/167), respectively. In the per-lesion analyses, the sensitivities of reader 1 and reader 2 were 75.9% (180/237) and 70.5% (167/237), respectively. Conclusion The per-patient sensitivity and specificity of non-contrast MRIs were within a reasonable range for the initial diagnosis of HCC. Non-contrast MRIs may have a potential for surveillance of HCC. Further confirmatory diagnostic test accuracy studies are needed.
Collapse
Affiliation(s)
- Seunghee Han
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Joon-Il Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Michael Yong Park
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Moon Hyung Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung Eun Rha
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Young Joon Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
25
|
Min JH, Kim YK, Kang TW, Jeong WK, Lee WJ, Ahn S, Hwang NY. Artifacts during the arterial phase of gadoxetate disodium-enhanced MRI: Multiple arterial phases using view-sharing from two different vendors versus single arterial phase imaging. Eur Radiol 2018; 28:3335-3346. [DOI: 10.1007/s00330-018-5307-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/27/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
|
26
|
Kambadakone AR, Fung A, Gupta RT, Hope TA, Fowler KJ, Lyshchik A, Ganesan K, Yaghmai V, Guimaraes AR, Sahani DV, Miller FH. LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound. Abdom Radiol (NY) 2018; 43:56-74. [PMID: 28940042 DOI: 10.1007/s00261-017-1325-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate detection and characterization of liver observations to enable HCC diagnosis and staging using LI-RADS requires a technically adequate imaging exam. To help achieve this objective, LI-RADS has proposed technical requirements for CT, MR, and contrast-enhanced ultrasound of liver. This article reviews the technical requirements for liver imaging, including the description of minimum acceptable technical standards, such as the scanner hardware requirements, recommended dynamic imaging phases, and common technical challenges of liver imaging.
Collapse
Affiliation(s)
- Avinash R Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Rajan T Gupta
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Thomas A Hope
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn J Fowler
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Karthik Ganesan
- Department of Radiology, Sir HN Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Vahid Yaghmai
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander R Guimaraes
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Dushyant V Sahani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Frank H Miller
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
27
|
Gruber L, Rainer V, Plaikner M, Kremser C, Jaschke W, Henninger B. CAIPIRINHA-Dixon-TWIST (CDT)-VIBE MR imaging of the liver at 3.0T with gadoxetate disodium: a solution for transient arterial-phase respiratory motion-related artifacts? Eur Radiol 2017; 28:2013-2021. [DOI: 10.1007/s00330-017-5210-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023]
|
28
|
Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid–Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing. Invest Radiol 2017; 52:596-604. [DOI: 10.1097/rli.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Application of High-Speed T1 Sequences for High-Quality Hepatic Arterial Phase Magnetic Resonance Imaging. Invest Radiol 2017; 52:605-611. [DOI: 10.1097/rli.0000000000000378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Goshima S, Noda Y, Kajita K, Kawai N, Koyasu H, Kawada H, Matsuo M, Bae KT. Gadoxetic acid-enhanced high temporal-resolution hepatic arterial-phase imaging with view-sharing technique: Impact on the LI-RADS category. Eur J Radiol 2017; 94:167-173. [PMID: 28709718 DOI: 10.1016/j.ejrad.2017.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the value of view-sharing multi-hepatic arterial-phase (mHAP) imaging for diagnosis of hypervascular hepatocellular carcinoma (HCC). MATERIALS AND METHODS Forty-seven consecutive patients with HCC underwent gadoxetic acid-enhanced magnetic resonance (MR) imaging before angiographic and lipiodol CT. Hepatic arterial-phase images were obtained at 5 consecutive phases with shared central k-space of 25%, followed by portal venous, late (2 and 3min), and hepatobiliary phase imaging. One-hundred-eight HCC nodules (size: 5-88mm, mean size: 18.2mm) confirmed on angiographic CT and lipiodol CT were evaluated for LI-RADS category and compared with single arterial-phase and mHAP findings regarding wash out, capsule, corona enhancement, and image quality. RESULTS Twenty-four HCCs (22.2%) (size: 6-19mm, mean size: 12.3mm) were categorized as LR-3 based on the single arterial-phase. Capsule appearance (25.9%) and washout (57.4%) were most frequently observed in late phase (2min). Corona enhancement was observed in 73.1% of all HCCs on mHAP. For the 24 HCCs of LR-3, corona enhancement was observed in 75% on mHAP and contributed to upgrade category. No significant difference was found in the frequency of corona enhancement between mHAP and angiographic CT (P=0.11). Image quality was valued as good or excellent in all cases. CONCLUSION View-sharing mHAP was feasible without compromising image quality and contributed to the improvement in diagnostic confidence for hypervascular HCC in gadoxetic acid-enhance MR imaging.
Collapse
Affiliation(s)
- Satoshi Goshima
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan.
| | - Yoshifumi Noda
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Kimihiro Kajita
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Hiromi Koyasu
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Hiroshi Kawada
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|