1
|
Sagdic HS, Hosseini-Siyanaki M, Raviprasad A, Munjerin S, Fabri D, Grajo J, Tonso VM, Magnelli L, Hochhegger D, Anthony E, Hochhegger B, Forghani R. Comparing two deep learning spectral reconstruction levels for abdominal evaluation using a rapid-kVp-switching dual-energy CT scanner. Abdom Radiol (NY) 2025:10.1007/s00261-025-04868-1. [PMID: 40095024 DOI: 10.1007/s00261-025-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Deep Learning Spectral Reconstruction (DLSR) potentially improves dual-energy CT (DECT) image quality, but there is a paucity of research involving human abdominal DECT scans. The purpose of this study was to comprehensively evaluate image quality by quantitatively and qualitatively comparing strong and standard levels of a DLSR algorithm. Optimal virtual monochromatic image (VMI) energy levels were also evaluated. METHODS DECT scans of the abdomen/pelvis from 51 patients were retrospectively evaluated. VMIs were reconstructed at energy levels ranging from 35 to 200 keV using both standard and strong DLSR levels. For quantitative analysis, various abdominal structures were assessed using regions of interest, and mean signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values were calculated. This was supplemented with a qualitative evaluation of VMIs reconstructed at 35, 45, 55, and 65 keV. RESULTS The strong-level DLSR demonstrated significantly better SNR and CNR values (p < 0.0001) compared to standard-level DLSR across all structures. The optimal SNR was observed at 70 keV (p < 0.0001), while the optimal CNR was found at 65 keV (p < 0.0001). The average qualitative scores between standard and strong DLSR were significantly different at 45, 55, and 65 keV (p < 0.0001). There was a moderate level of agreement between observers (ICC = 0.427, p < 0.0001). CONCLUSION A DLSR set to a strong level significantly improves image quality compared to standard-level DLSR, potentially enhancing the diagnostic evaluation of abdominal DECT scans. In addition to achieving a very high SNR, 65 keV VMIs had the highest CNR, which differs from what is typically observed with traditional DECT using non-deep learning reconstruction approaches.
Collapse
Affiliation(s)
- Hakki Serdar Sagdic
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Mohammadreza Hosseini-Siyanaki
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Abheek Raviprasad
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sefat Munjerin
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Daniella Fabri
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, USA
| | - Joseph Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Victor Martins Tonso
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Laura Magnelli
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Daniela Hochhegger
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Evelyn Anthony
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bruno Hochhegger
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Reza Forghani
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Radiology, AdventHealth Medical Group, Maitland, FL, USA.
| |
Collapse
|
2
|
Gallo-Bernal S, Peña-Trujillo V, Gee MS. Dual-energy computed tomography: pediatric considerations. Pediatr Radiol 2024; 54:2112-2126. [PMID: 39470784 DOI: 10.1007/s00247-024-06074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
Multidetector computed tomography (CT) has revolutionized medicine and is now a fundamental aspect of modern radiology. Hardware and software advancements have significantly improved CT accessibility, image quality, and acquisition times. While considerable attention has been directed towards the potential risks of ionizing radiation from CT scans in children, recent concerns regarding the possible short- and long-term risks related to magnetic resonance imaging (MRI) conducted under general anesthesia have generated fresh interest in novel pediatric CT applications and techniques that allow imaging of awake patients at low radiation doses. Among these novel techniques, dual-energy CT (DECT) stands out for its ability to provide enhanced diagnostic information, reduce radiation doses further, and facilitate faster scans, making it a highly promising tool in pediatric radiology. This manuscript explores the current role of DECT in pediatric imaging, emphasizing its technical foundations, hardware configurations, and various reconstruction techniques. We discuss advanced post-processing techniques, such as material decomposition algorithms and virtual monoenergetic imaging, highlighting their clinical advantages in improving diagnostic accuracy and patient outcomes. Furthermore, the paper reviews the clinical applications of DECT in evaluating pulmonary perfusion, cardiovascular assessments, and oncologic imaging in pediatric patients.
Collapse
Affiliation(s)
- Sebastian Gallo-Bernal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St., Austen 250, Boston, MA, 02114, USA
- Harvard University, Cambridge, MA, USA
- Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, Boston, MA, USA
| | - Valeria Peña-Trujillo
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St., Austen 250, Boston, MA, 02114, USA
- Harvard University, Cambridge, MA, USA
- Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, Boston, MA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St., Austen 250, Boston, MA, 02114, USA.
- Harvard University, Cambridge, MA, USA.
- Pediatric Imaging Research Center (PIRC), Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Xie M, Wang H, Tang S, Chen M, Li T, He L. Application of dual-energy CT with prospective ECG-gating in cardiac CT angiography for children: Radiation and contrast agent dose. Eur J Radiol 2024; 170:111229. [PMID: 38056348 DOI: 10.1016/j.ejrad.2023.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE This research aimed to investigate the feasibility of utilizing dual-energy CT virtual monoenergetic images (VMI1) with prospective electrocardiogram (ECG2) gating for reducing radiation and contrast agent doses in pediatric patients with congenital heart disease (CHD3). METHODS There were 100 pediatric patients with CHD included in this study. Group A (n = 50) underwent dual-energy scanning with prospective ECG-gating, and group B (n = 50) underwent conventional scanning with retrospective ECG-gating. Comparative analysis of CT values of lumen, objective image quality assessment, subjective image quality evaluations, and diagnostic efficacy were performed. RESULTS CT values, image noise, signal-to-noise ratio (SNR4), and contrast-to-noise ratio (CNR5) were significantly affected by the VMI energy level, and they all increased with decreasing energy levels (P > 0.05). Combining subjective evaluation, the 45 keV VMI was considered the optimum image in group A. The 45 keV VMI exhibited higher CT values of lumen compared to conventional scanning images (P < 0.003 ∼ 0.836), but meanwhile, the image noise was also higher in the 45 keV VMI (P = 0.004). Differences between the two groups in SNR, CNR, and diagnostic accuracy were not statistically significant. Compared to group B, the 45 keV VMI showed fewer contrast-induced artifacts (P < 0.001) and higher image quality score (P = 0.037). Group A had a 64 % reduction in radiation dose and a 40 % decrease in iodine dose compared to group B. CONCLUSION The combination of dual-energy CT with prospective ECG-gating reduces radiation and iodine doses in pediatric patients with CHD. The 45 keV VMI can provide clinically acceptable image quality while declining contrast agent artifacts.
Collapse
Affiliation(s)
- Mingye Xie
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Mingjing Chen
- Department of Radiology, Jining No.1 People'S Hospital, Jining 272002, China.
| | - Ting Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
4
|
Kang Y, Hwang SH, Han K, Shin HJ. Comparison of image quality, contrast administration, and radiation doses in pediatric abdominal dual-layer detector dual-energy CT using propensity score matching analysis. Eur J Radiol 2023; 169:111177. [PMID: 37944333 DOI: 10.1016/j.ejrad.2023.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To compare the image quality, contrast administration, and radiation dose between single-energy CT (SECT) and dual-energy CT (DECT) in pediatric patients. METHODS From March to December 2021, children who underwent abdominal SECT or DECT were retrospectively included in this study. The DECT group received 10-30 % less contrast than the routine dose. CT images were obtained at hepatic venous phase using a routine reconstruction method (iDose4). DECT scans were additionally reconstructed with a virtual monoenergetic image (VMI) at 40 and 65 keV. Quantitative image evaluations compared the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the liver, portal vein, and pancreas. Qualitative analysis assessed degree of contrast enhancement, lesion or organ conspicuity, image noise, artificiality, and overall image quality. RESULTS Among 318 patients, 112 (median age, 16 years; 56 in each group) were included after propensity score matching. Compared with the SECT group, DECT group with iDose4 demonstrated lower CNRs and SNRs, while VMI at 40 or 65 keV showed no significant difference. In qualitative analysis, iDose4 produced higher scores on artificiality, and VMI at 40 keV demonstrated superior contrast enhancement and lesion conspicuity in the DECT group. Overall image quality was higher with VMI 65 keV among the DECT patients, and there was no significant difference compared to SECT. The volume CT dose index (CTDIvol) did not differ significantly between the two groups (median, 2.8 mGy vs. 2.9 mGy; p = 0.802). The injected contrast volume was reduced by 10 % in the DECT group. CONCLUSION Pediatric abdominal DECT with reduced contrast administration showed no significant differences in image quality and radiation dose compared to SECT.
Collapse
Affiliation(s)
- Yeseul Kang
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Yongin Severance Hospital 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 16995, Republic of Korea
| | - Shin Hye Hwang
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Yongin Severance Hospital 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 16995, Republic of Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun Joo Shin
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Yongin Severance Hospital 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 16995, Republic of Korea.
| |
Collapse
|
5
|
Peña-Trujillo V, Gallo-Bernal S, Tung EL, Gee MS. Pediatric Applications of Dual-Energy Computed Tomography. Radiol Clin North Am 2023; 61:1069-1083. [PMID: 37758357 DOI: 10.1016/j.rcl.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
There is renewed interest in novel pediatric dual-energy computed tomography (DECT) applications that can image awake patients faster and at low radiation doses. DECT enables the simultaneous acquisition of 2 data sets at different energy levels, allowing for better material characterization and unique image reconstructions that enhance image analysis and provide quantitative and qualitative information about tissue composition. Pediatric DECT reduces radiation doses further while accelerating image acquisition and improving motion robustness. Current applications include the improved evaluation of congenital and acquired cardiovascular anomalies, lung perfusion and ventilation, renal stone composition, tumor extension and treatment response, and gastrointestinal diseases.
Collapse
Affiliation(s)
- Valeria Peña-Trujillo
- Division of Pediatric Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA. https://twitter.com/valeria_pt22
| | - Sebastian Gallo-Bernal
- Division of Pediatric Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA. https://twitter.com/SebGal1230
| | - Erik L Tung
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA. https://twitter.com/ErikTungMD
| | - Michael S Gee
- Division of Pediatric Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Wang Y, Chen X, Lu G, Su Y, Yang L, Shi G, Zhang F, Zhuo J, Duan X, Hu H. Improving the Visualization of the Adrenal Veins Using Virtual Monoenergetic Images from Dual-Energy Computed Tomography before Adrenal Venous Sampling. Tomography 2023; 9:485-496. [PMID: 36960999 PMCID: PMC10037600 DOI: 10.3390/tomography9020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: This study explored the optimal energy level in advanced virtual monoenergetic images (VMI+) from dual-energy computed tomography angiography (DE-CTA) for adrenal veins visualization before adrenal venous sampling (AVS). (2) Methods: Thirty-nine patients were included in this prospective single-center study. The CT value, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in both adrenal veins and abdominal solid organs and were then compared between VMI+ within the range of 40-80 kiloelectron volt (keV). The visualization rate of the adrenal veins and the overall image quality of solid organs were subjectively compared among different keV VMI+. The AVS success rate was recorded for 20 patients. (3) Results: For the adrenal veins, 40 keV VMI+ had the peak CT value, noise and CNR (p < 0.05). Subjectively, the visualization rate was the highest at 40 keV (100% for the right adrenal vein, and 97.4% for the left adrenal vein) (p < 0.05). For solid organs, the CT value, noise and CNR at 50 keV were lower than those at 40 keV (p < 0.05), but the SNR was similar between 40 keV and 50 keV. The overall subjective image quality of solid organs at 50 keV was the best (p < 0.05). The AVS success rate was 95%. (4) Conclusions: For VMI+, 40 keV was the preferential energy level to obtain a high visualization rate of the adrenal veins and a high success rate of AVS, while 50 keV was the favorable energy level for the depiction of abdominal organs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xiaohong Chen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Guoxiong Lu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yun Su
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Lingjie Yang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Guangzi Shi
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiayi Zhuo
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| |
Collapse
|
7
|
Graafen D, Müller L, Halfmann M, Düber C, Hahn F, Yang Y, Emrich T, Kloeckner R. Photon-counting detector CT improves quality of arterial phase abdominal scans: A head-to-head comparison with energy-integrating CT. Eur J Radiol 2022; 156:110514. [PMID: 36108479 DOI: 10.1016/j.ejrad.2022.110514] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Photon-counting detector (PCD)-CT is expected to have a substantial impact on oncologic abdominal imaging. We compared subjective and objective image quality between PCD-CT and conventional energy-integrating detector (EID-)CT arterial phase abdominal scans. METHODS This study included 84 patients undergoing both types of abdominal CT. EID-CT scans were acquired with a tube voltage of 100 kVp. With PCD-CT, acquired with 120-kVp, we reconstructed polychromatic T3D images and virtual monoenergetic images (VMIs) in 10-keV intervals from 40 to 90 keV. Quantitative image analysis included noise and contrast-to-noise ratio (CNR) of hepatic vessels, kidney cortex, and hypervascular liver lesions to liver parenchyma. Three raters used a 5-point Likert scale for qualitative image analysis of image noise and contrast, lesion conspicuity, and overall image quality. Radiation dose exposure (CT dose index) was compared between the two CT types. RESULTS Mean CT dose index and effective dose were respectively 18 % and 26 % lower with PCD-CT versus EID-CT. Compared with EID-CT, CNRs of kidney cortex and vessel to liver parenchyma were significantly higher in PCD-CT VMIs at energies ≤ 60 keV and in polychromatic T3D images (p < 0.004). Overall image quality of PCD-CT VMIs at 50 and 60 keV was rated as significantly better (p < 0.01) than the EID-CT images (inter-reader agreement alpha = 0.80). Lesion conspicuity was significantly better in low-keV VMIs (p < 0.03) and worse in > 70-keV VMIs. CONCLUSIONS With low-keV VMI, PCD-CT yields significantly improved objective and subjective quality of arterial phase oncological imaging compared with EID-CT. This advantage may translate into higher diagnostic confidence and lower radiation dose protocols.
Collapse
Affiliation(s)
- D Graafen
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - L Müller
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - M Halfmann
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
| | - C Düber
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - F Hahn
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Y Yang
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - T Emrich
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
| | - R Kloeckner
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Liang H, Zhou Y, Zheng Q, Yan G, Liao H, Du S, Zhang X, Lv F, Zhang Z, Li YM. Dual-energy CT with virtual monoenergetic images and iodine maps improves tumor conspicuity in patients with pancreatic ductal adenocarcinoma. Insights Imaging 2022; 13:153. [PMID: 36153376 PMCID: PMC9509509 DOI: 10.1186/s13244-022-01297-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives To evaluate the value of monoenergetic images (MEI [+]) and iodine maps in dual-source dual-energy computed tomography (DECT) for assessing pancreatic ductal adenocarcinoma (PDAC), including the visually isoattenuating PDAC. Materials and methods This retrospective study included 75 PDAC patients, who underwent contrast-enhanced DECT examinations. Conventional polyenergetic image (PEI) and 40–80 keV MEI (+) (10-keV increments) were reconstructed. The tumor contrast, contrast-to-noise ratio (CNR) of the tumor and peripancreatic vessels, the signal-to-noise ratio (SNR) of the pancreas and tumor, and the tumor diameters were quantified. On iodine maps, the normalized iodine concentration (NIC) in the tumor and parenchyma was compared. For subjective analysis, two radiologists independently evaluated images on a 5-point scale. Results All the quantitative parameters were maximized at 40-keV MEI (+) and decreased gradually with increasing energy. The tumor contrast, SNR of pancreas and CNRs in 40–60 keV MEI (+) were significantly higher than those in PEI (p < 0.05). For visually isoattenuating PDAC, 40–50 keV MEI (+) provided significantly higher tumor CNR compared to PEI (p < 0.05). The reproducibility in tumor measurements was highest in 40-keV MEI (+) between the two radiologists. The tumor and parenchyma NIC were 1.28 ± 0.65 and 3.38 ± 0.72 mg/mL, respectively (p < 0.001). 40–50 keV MEI (+) provided the highest subjective scores, compared to PEI (p < 0.001). Conclusions Low-keV MEI (+) of DECT substantially improves the subjective and objective image quality and consistency of tumor measurements in patients with PDAC. Combining the low-keV MEI (+) and iodine maps may yield diagnostically adequate tumor conspicuity in visually isoattenuating PDAC.
Collapse
|
9
|
Higashigaito K, Euler A, Eberhard M, Flohr TG, Schmidt B, Alkadhi H. Contrast-Enhanced Abdominal CT with Clinical Photon-Counting Detector CT: Assessment of Image Quality and Comparison with Energy-Integrating Detector CT. Acad Radiol 2022; 29:689-697. [PMID: 34389259 DOI: 10.1016/j.acra.2021.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES To determine quantitative and qualitative image quality of contrast-enhanced abdominal photon-counting detector CT (PCD-CT) compared to energy-integrating detector CT (EID-CT) in the same patients. MATERIAL AND METHODS Thirty-nine patients (mean age 63 ± 10 years, 10 females, mean BMI 26.0 ± 5.7 kg/m2) were retrospectively included who underwent clinically indicated, contrast-enhanced abdominal CT in portal-venous phase with first-generation dual-source PCD-CT and who underwent previous abdominal CT with EID-CT. For both scan, same contrast media protocol was used. PCD-CT was performed in QuantumPlus mode (obtaining full spectral information) at 120kVp. EID-CT was performed using automated tube voltage selection (reference tube voltage 100kVp). In PCD-CT, virtual monoenergetic images (VMI) were reconstructed in 10keV intervals (40-90 keV). Tube current-time product in PCD-CT was modified in each patient to obtain same volume CT-dose-index (CTDIvol) as with EID-CT. Attenuation of organs and vascular structures were measured, noise quantified, and contrast-to-noise ratio (CNR) calculated. Two independent, blinded radiologists assessed subjective image quality using a 5-point Likert scale (overall image quality, image noise, contrast, and liver lesion conspicuity). RESULTS Median time interval between the scan was 12 months. BMI (p = 0.905) and CTDIvol (p = 0.984) were similar between scans. CNRparenchymal and CNRvascular of VMI from PCD-CT at 40 and 50keV were significantly higher than EID-CT (all, p < 0.05). Overall, inter-reader agreement for all subjective image quality readings was substantial (Krippendorff's alpha = 0.773). Overall image quality of VMI was rated similar at 50 and 60 keV compared to EID-CT (all, p > 0.05). Subjective image noise was significantly higher at 40-50 keV, contrast significantly higher at 40-60 keV (all, p < 0.05). Lesion conspicuity was rated similar on all images. CONCLUSION Our intra-individual analysis of abdominal PCD-CT indicates that VMI at 50 keV shows significantly higher CNR at similar subjective image quality as compared to EID-CT at identical radiation dose.
Collapse
|
10
|
Liang HW, Zhou Y, Zhang ZW, Yan GW, Du SL, Zhang XH, Li XY, Lv FJ, Zheng Q, Li YM. Dual-energy CT with virtual monoenergetic images to improve the visualization of pancreatic supplying arteries: the normal anatomy and variations. Insights Imaging 2022; 13:21. [PMID: 35122162 PMCID: PMC8816990 DOI: 10.1186/s13244-022-01157-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/07/2022] [Indexed: 12/31/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains a malignancy with poor prognosis, appropriate surgical resection and neoadjuvant therapy depend on the accurate identification of pancreatic supplying arteries. We aim to evaluate the ability of monoenergetic images (MEI [+]) of dual-energy CT (DECT) to improve the visualization of pancreatic supplying arteries compared to conventional polyenergetic images (PEI) and investigate the implications of vascular variation in pancreatic surgery and transarterial interventions. Results One hundred patients without pancreatic diseases underwent DECT examinations were retrospectively enrolled in this study. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at 40-keV MEI (+) were significantly higher than those of PEI (p < 0.05). All subjective MEI (+) scores were significantly higher than those of PEI (p < 0.05). The visualization rates were significantly higher for posterior superior pancreaticoduodenal artery (PSPDA), anterior and posterior inferior pancreaticoduodenal artery (AIPDA, PIPDA), anterior and posterior pancreaticoduodenal arcade (APAC, PPAC), transverse and caudal pancreatic artery (TPA, PCA) at 40-keV MEI (+) than those of PEI (p < 0.05). However, there were no significant differences for visualizing anterior superior pancreaticoduodenal artery (ASPDA), inferior pancreaticoduodenal artery (IPDA), dorsal and magnificent pancreatic artery (DPA, MPA) between 40-keV MEI (+) and PEI (p > 0.05). Four types of variations were observed in the origin of DPA and three to five types in the origin of PSPDA, AIPDA and PIPDA. Conclusions 40-keV MEI (+) of DECT improves the visualization and objective and subjective image quality of pancreatic supplying arteries compared to PEI. Pancreatic supplying arteries have great variations, which has important implications for preoperative planning of technically challenging surgeries and transarterial interventions.
Collapse
Affiliation(s)
- Hong-Wei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhi-Wei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Gao-Wu Yan
- Department of Radiology, Suining Central Hospital, Suining, 629000, China
| | - Si-Lin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiao-Hui Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xin-You Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fa-Jin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiao Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yong-Mei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
11
|
Tatsugami F, Higaki T, Nakamura Y, Honda Y, Awai K. Dual-energy CT: minimal essentials for radiologists. Jpn J Radiol 2022; 40:547-559. [PMID: 34981319 PMCID: PMC9162973 DOI: 10.1007/s11604-021-01233-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Dual-energy CT, the object is scanned at two different energies, makes it possible to identify the characteristics of materials that cannot be evaluated on conventional single-energy CT images. This imaging method can be used to perform material decomposition based on differences in the material-attenuation coefficients at different energies. Dual-energy analyses can be classified as image data-based- and raw data-based analysis. The beam-hardening effect is lower with raw data-based analysis, resulting in more accurate dual-energy analysis. On virtual monochromatic images, the iodine contrast increases as the energy level decreases; this improves visualization of contrast-enhanced lesions. Also, the application of material decomposition, such as iodine- and edema images, increases the detectability of lesions due to diseases encountered in daily clinical practice. In this review, the minimal essentials of dual-energy CT scanning are presented and its usefulness in daily clinical practice is discussed.
Collapse
Affiliation(s)
- Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuko Nakamura
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
12
|
Comparison of radiation dose and image quality between contrast-enhanced single- and dual-energy abdominopelvic computed tomography in children as a function of patient size. Pediatr Radiol 2021; 51:2000-2008. [PMID: 34244847 DOI: 10.1007/s00247-021-05127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Widespread adoption of dual-energy computed tomography (DECT) requires evidence it does not cause higher radiation dose than conventional single-energy CT (SECT). While a few publications involving pediatric patients exist, most have focused on small cohorts. Hence, there is still a need for studies that ascertain what radiation doses are expected in larger populations that include representative ranges of patient sizes and ages. OBJECTIVE To compare radiation dose and image quality of DECT and SECT abdominopelvic examinations in children as a function of patient size. MATERIALS AND METHODS This retrospective study included 860 children (age range: 12.3±5.3 years) who underwent contrast-enhanced abdominopelvic exams on second-generation dual-source CT in a five-year period. Two groups, SECT and DECT, consisting of 430 children each, were matched by 5 effective diameters. Volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) were analyzed as a function of effective diameter. Objective image quality was compared between the groups. RESULTS DECT SSDEs were lower across all effective patient diameters compared with SECT (mean: 8.5±1.8 mGv vs. 9.3±2.0 mGv, respectively, P≤0.001). DECT CTDIvol was lower compared to SECT (mean: 5.6±2.4 mGv vs. 6.1±2.7 mGv, respectively, P≤0.001) except in the smallest diameter group (<15 cm) where it was comparable to SECT (P=0.065). Objective image quality versus effective diameter between the two CT groups was comparable (P>0.05). CONCLUSION In children, regardless of effective diameter, contrast-enhanced abdominopelvic DECT can be performed with a similar or lower dose and similar image quality compared with SECT examinations.
Collapse
|
13
|
Kim GM, Choo KS, Kim JH, Hwang JY, Park CK, Lee JW, Lim SJ. Comparison of noise-optimized linearly blended images and noise-optimized virtual monoenergetic images evaluated by dual-source, dual-energy CT in cardiac vein assessment. Acta Radiol 2021; 62:594-602. [PMID: 32551805 DOI: 10.1177/0284185120933242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The coronary venous system is frequently used as an entry route to the heart and treatment modalities for many cardiac diseases and many procedures. Consequently, evaluation of the coronary venous system and understanding cardiac vein anatomy is crucial. PURPOSE To determine the optimal image set in a comparison of noise-optimized linearly blended images (F_0.6) and noise-optimized virtual monoenergetic images (VMI+) evaluated by dual-energy computed tomography (DECT) for cardiac vein assessment. MATERIAL AND METHODS Thirty-four patients (mean age 58.2 ± 14.2 years) who underwent DECT due to chest pain were enrolled. Images were post-processed with the F_0.6, and VMI+ algorithms at energy levels in the range of 40-100 keV in 10-keV increments. Enhancement (HU), noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively measured at two points in the great cardiac vein by consensus of two radiologists. Two blinded observers evaluated the subjective image quality of the great cardiac vein on a 4-point scale. RESULTS HU, noise, and SNR peaked at 40 keV VMI+ (P < 0.05) among 50-100 keV VMI+. CNR peaked at 100 keV VMI+; however, there were no significant differences compared to CNR images processed at 40-90 keV VMI+. HU and noise were significantly higher in 40 keV VMI+ than F_0.6 images; however, both SNR and CNR were significantly higher in F_0.6 images. An assessment of subjective vein delineation revealed that F_0.6 images had the highest scores. CONCLUSION F_0.6 images were superior to VMI+ and provided the optimal image set for cardiac vein assessment.
Collapse
Affiliation(s)
- Gyeong Min Kim
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ki Seok Choo
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jin Hyeok Kim
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jae-Yeon Hwang
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Chan Kyu Park
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ji Won Lee
- Department of Radiology, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo Jin Lim
- Department of Cardiology, Kim Hae Kangil Hospital, Gimhae, Republic of Korea
| |
Collapse
|
14
|
Parakh A, Lennartz S, An C, Rajiah P, Yeh BM, Simeone FJ, Sahani DV, Kambadakone AR. Dual-Energy CT Images: Pearls and Pitfalls. Radiographics 2021; 41:98-119. [PMID: 33411614 PMCID: PMC7853765 DOI: 10.1148/rg.2021200102] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Dual-energy CT (DECT) is a tremendous innovation in CT technology that allows creation of numerous imaging datasets by enabling discrete acquisitions at more than one energy level. The wide range of images generated from a single DECT acquisition provides several benefits such as improved lesion detection and characterization, superior determination of material composition, reduction in the dose of iodine, and more robust quantification. Technological advances and the proliferation of various processing methods have led to the availability of diverse vendor-based DECT approaches, each with a different acquisition and image reconstruction process. The images generated from various DECT scanners differ from those from conventional single-energy CT because of differences in their acquisition techniques, material decomposition methods, image reconstruction algorithms, and postprocessing methods. DECT images such as virtual monochromatic images, material density images, and virtual unenhanced images have different imaging appearances, texture features, and quantitative capabilities. This heterogeneity creates challenges in their routine interpretation and has certain associated pitfalls. Some artifacts such as residual iodine on virtual unenhanced images and an appearance of pseudopneumatosis in a gas-distended bowel loop on material-density iodine images are specific to DECT, while others such as pseudoenhancement seen on virtual monochromatic images are also observed at single-energy CT. Recognizing the potential pitfalls associated with DECT is necessary for appropriate and accurate interpretation of the results of this increasingly important imaging tool. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Anushri Parakh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Simon Lennartz
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Chansik An
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Prabhakar Rajiah
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Benjamin M Yeh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Frank J Simeone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Dushyant V Sahani
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| | - Avinash R Kambadakone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, Calif (C.A., B.M.Y.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of Washington, Seattle, Wash (D.V.S.); and Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.)
| |
Collapse
|
15
|
Singh R, Wu W, Wang G, Kalra MK. Artificial intelligence in image reconstruction: The change is here. Phys Med 2020; 79:113-125. [DOI: 10.1016/j.ejmp.2020.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
|
16
|
Lee S, Choi YH, Cho YJ, Lee SB, Cheon JE, Kim WS, Ahn CK, Kim JH. Noise reduction approach in pediatric abdominal CT combining deep learning and dual-energy technique. Eur Radiol 2020; 31:2218-2226. [PMID: 33030573 DOI: 10.1007/s00330-020-07349-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To evaluate the image quality of low iodine concentration, dual-energy CT (DECT) combined with a deep learning-based noise reduction technique for pediatric abdominal CT, compared with standard iodine concentration single-energy polychromatic CT (SECT). METHODS From December 2016 to May 2017, DECT with 300 mg•I/mL contrast medium was performed in 29 pediatric patients (17 boys, 12 girls; age, 2-19 years). The DECT images were reconstructed using a noise-optimized virtual monoenergetic reconstruction image (VMI) with and without a deep learning method. SECT images with 350 mg•I/mL contrast medium, performed within the last 3 months before the DECT, served as reference images. The quantitative and qualitative parameters were compared using paired t tests and Wilcoxon signed-rank tests, and the differences in radiation dose and total iodine administration were assessed. RESULTS The linearly blended DECT showed lower attenuation and higher noise than SECT. The 60-keV VMI showed an increase in attenuation and higher noise than SECT. The combined 60-keV VMI plus deep learning images showed low noise, no difference in contrast-to-noise ratios, and overall image quality or diagnostic image quality, but showed a higher signal-to-noise ratio in the liver and lower enhancement of lesions than SECT. The overall image and diagnostic quality of lesions were maintained on the combined noise reduction approach. The CT dose index volume and total iodine administration in DECT were respectively 19.6% and 14.3% lower than those in SECT. CONCLUSION Low iodine concentration DECT, combined with deep learning in pediatric abdominal CT, can maintain image quality while reducing the radiation dose and iodine load, compared with standard SECT. KEY POINTS • An image noise reduction approach combining deep learning and noise-optimized virtual monoenergetic image reconstruction can maintain image quality while reducing radiation dose and iodine load. • The 60-keV virtual monoenergetic image reconstruction plus deep learning images showed low noise, no difference in contrast-to-noise ratio, and overall image quality, but showed a higher signal-to-noise ratio in the liver and a lower enhancement of lesion than single-energy polychromatic CT. • This combination could offer a 19.6% reduction in radiation dose and a 14.3% reduction in iodine load, in comparison with a control group that underwent single-energy polychromatic CT with the standard protocol.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seul Bi Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul Kyun Ahn
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
17
|
Reducing Radiation Dose and Contrast Medium Volume With Application of Dual-Energy CT in Children and Young Adults. AJR Am J Roentgenol 2020; 214:1199-1205. [DOI: 10.2214/ajr.19.22231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Choe YH. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency. Korean J Radiol 2020; 21:1284. [PMID: 33236548 PMCID: PMC7689137 DOI: 10.3348/kjr.2020.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- HVSI Imaging Center, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Choe YH. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology. Korean J Radiol 2019; 20:1555-1561. [PMID: 31854145 PMCID: PMC6923209 DOI: 10.3348/kjr.2019.0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|