1
|
Yousefi M, Boross G, Weiss C, Murray CW, Hebert JD, Cai H, Ashkin EL, Karmakar S, Andrejka L, Chen L, Wang M, Tsai MK, Lin WY, Li C, Yakhchalian P, Colón CI, Chew SK, Chu P, Swanton C, Kunder CA, Petrov DA, Winslow MM. Combinatorial Inactivation of Tumor Suppressors Efficiently Initiates Lung Adenocarcinoma with Therapeutic Vulnerabilities. Cancer Res 2022; 82:1589-1602. [PMID: 35425962 PMCID: PMC9022333 DOI: 10.1158/0008-5472.can-22-0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with lung adenocarcinoma being the most common subtype. Many oncogenes and tumor suppressor genes are altered in this cancer type, and the discovery of oncogene mutations has led to the development of targeted therapies that have improved clinical outcomes. However, a large fraction of lung adenocarcinomas lacks mutations in known oncogenes, and the genesis and treatment of these oncogene-negative tumors remain enigmatic. Here, we perform iterative in vivo functional screens using quantitative autochthonous mouse model systems to uncover the genetic and biochemical changes that enable efficient lung tumor initiation in the absence of oncogene alterations. Generation of hundreds of diverse combinations of tumor suppressor alterations demonstrates that inactivation of suppressors of the RAS and PI3K pathways drives the development of oncogene-negative lung adenocarcinoma. Human genomic data and histology identified RAS/MAPK and PI3K pathway activation as a common feature of an event in oncogene-negative human lung adenocarcinomas. These Onc-negativeRAS/PI3K tumors and related cell lines are vulnerable to pharmacologic inhibition of these signaling axes. These results transform our understanding of this prevalent yet understudied subtype of lung adenocarcinoma. SIGNIFICANCE To address the large fraction of lung adenocarcinomas lacking mutations in proto-oncogenes for which targeted therapies are unavailable, this work uncovers driver pathways of oncogene-negative lung adenocarcinomas and demonstrates their therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally
| | - Gábor Boross
- Department of Biology, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Carly Weiss
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Jess D. Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Saswati Karmakar
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Leo Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Minwei Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K. Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wen-Yang Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Pegah Yakhchalian
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Caterina I. Colón
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Kit Chew
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Pauline Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Christian A. Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A. Petrov
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Cha MJ, Lee KS, Kim TJ, Kim HS, Kim TS, Chung MJ, Kim BT, Kim YS. Solitary Nodular Invasive Mucinous Adenocarcinoma of the Lung: Imaging Diagnosis Using the Morphologic-Metabolic Dissociation Sign. Korean J Radiol 2019; 20:513-521. [PMID: 30799583 PMCID: PMC6389819 DOI: 10.3348/kjr.2018.0409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Min Jae Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Tae Jung Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Su Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Sung Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung Jin Chung
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yang Soo Kim
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
EGFR Mutation Analysis in Non-small Cell Lung Carcinoma Patients: A Liquid Biopsy Approach. Indian J Clin Biochem 2019; 36:51-58. [PMID: 33505127 DOI: 10.1007/s12291-019-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
In the era of the targeted therapy identification of EGFR mutation detection in lung cancer is extremely helpful to predict the treatment efficacy of EGFR tyrosine kinase inhibitors (TKIs). Unfortunately, the inadequacy and quality of the biopsy samples are the major obstacles in molecular testing of EGFR mutation in lung cancer. To address this issue, the present study intended to use liquid biopsy as the non-invasive method for EGFR mutation detection. A total of 31 patients with an advanced stage of lung cancer were enrolled in the study from which cell-free DNA (cfDNA) and FFPE tissue DNA was extracted. Extracted DNA samples were analyzed for further EGFR exon specific mutation analysis by ARMS-PCR. Data were analyzed statistically using SPSS software. In cfDNA samples, the prevalence of wild type EGFR was 48% while the prevalence of TKI resistant and TKI sensitive mutations were 3%. Conversely, in tissue DNA samples, the prevalence of wild type, TKI sensitive and TKI resistant mutations were 48%, 19%, and 3%, respectively. The overall concordance of EGFR mutation between cfDNA and tissue DNA was 83%. McNemar's test revealed that there was no significant difference between EGFR expression of cfDNA and tissue DNA samples. Additionally, the significant-high incidence of TKI resistant mutations was observed in tobacco habituates, indicating the role of carcinogens present in the tobacco in developing resistant mutations. In conclusion, our data suggest that evaluation of EGFR mutation from cfDNA samples is practicable as a non-invasive tool in patients with advanced-stage of lung cancer.
Collapse
|
4
|
A Radiologist's Guide to the Changing Treatment Paradigm of Advanced Non-Small Cell Lung Cancer: The ASCO 2018 Molecular Testing Guidelines and Targeted Therapies. AJR Am J Roentgenol 2019; 213:1047-1058. [PMID: 31361530 DOI: 10.2214/ajr.19.21135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this article is to provide an imaging-based guide of the modern genomic classifications and targeted therapies for advanced non-small cell lung cancer (NSCLC) with an emphasis on the relevance of the 2018 American Society of Clinical Oncology molecular testing guidelines for radiologists. CONCLUSION. Knowledge of the radiologic relevance of lung cancer driver mutations and modern targeted agents is essential for imaging interpretation of advanced NSCLC in the modern age of precision medicine.
Collapse
|
5
|
Bak SH, Park H, Sohn I, Lee SH, Ahn MJ, Lee HY. Prognostic Impact of Longitudinal Monitoring of Radiomic Features in Patients with Advanced Non-Small Cell Lung Cancer. Sci Rep 2019; 9:8730. [PMID: 31217441 PMCID: PMC6584670 DOI: 10.1038/s41598-019-45117-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor growth dynamics vary substantially in non-small cell lung cancer (NSCLC). We aimed to develop biomarkers reflecting longitudinal change of radiomic features in NSCLC and evaluate their prognostic power. Fifty-three patients with advanced NSCLC were included. Three primary variables reflecting patterns of longitudinal change were extracted: area under the curve of longitudinal change (AUC1), beta value reflecting slope over time, and AUC2, a value obtained by considering the slope and area over the longitudinal change of features. We constructed models for predicting survival with multivariate cox regression, and identified the performance of these models. AUC2 exhibited an excellent correlation between patterns of longitudinal volume change and a significant difference in overall survival time. Multivariate regression analysis based on cut-off values of radiomic features extracted from baseline CT and AUC2 showed that kurtosis of positive pixel values and surface area from baseline CT, AUC2 of density, skewness of positive pixel values, and entropy at inner portion were associated with overall survival. For the prediction model, the areas under the receiver operating characteristic curve (AUROC) were 0.948 and 0.862 at 1 and 3 years of follow-up, respectively. Longitudinal change of radiomic tumor features may serve as prognostic biomarkers in patients with advanced NSCLC.
Collapse
Affiliation(s)
- So Hyeon Bak
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, Suwon, Korea
| | - Insuk Sohn
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Seung Hak Lee
- Department of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Myung-Ju Ahn
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
6
|
Choe YH. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology. Korean J Radiol 2019; 20:1555-1561. [PMID: 31854145 PMCID: PMC6923209 DOI: 10.3348/kjr.2019.0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yeon Hyeon Choe
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Park YG, Choi J, Jung HK, Kim B, Kim C, Park SY, Seol JW. Baicalein inhibits tumor progression by inhibiting tumor cell growth and tumor angiogenesis. Oncol Rep 2017; 38:3011-3018. [PMID: 29048641 DOI: 10.3892/or.2017.6007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/18/2017] [Indexed: 11/06/2022] Open
Abstract
Baicalein, a herbal medicine, is a natural flavonoid isolated from the roots of Scutellaria baicalensis Georgi. It is known for its anticancer, anti-inflammatory and neuroprotective properties. Despite these well-known properties, it is not yet clear what effect baicalein has on tumor progression. Therefore, in the present study, we used B16F10 cells, Lewis lung carcinoma (LLC) cells, and human umbilical vein endothelial cells (HUVECs) to investigate the effect of baicalein on cell proliferation and viability, migration and tube formation in vitro. In addition, an experimental animal model was used to observe the growth rate and metastasis of tumors and tumor vessel formation in vivo. Our results showed that baicalein decreased the proliferation and migration and induced tumor cell death via caspase-3 activation in the B16F10 and LLC cells, and strongly inhibited tube formation and cell migration in HUVECs. Furthermore, mouse models showed that baicalein reduced the tumor volume and greatly reduced the tumor growth rate in the early stages of tumor progression, and the baicalein-treated groups had significantly reduced expression of CD31 (endothelial cell marker) and α-SMA (mural cell marker) in the tumors, indicating that baicalein inhibits tumor angiogenesis by disrupting tumor vasculature development. Comparison of the lymph node and lung samples collected from the baicalein-treated group, and the untreated group showed that baicalein reduced metastasis of the tumor to these tissues. In summary, baicalein reduced tumor progression and metastasis, directly induced tumor cell death, and inhibited tumor angiogenesis. Our results strongly demonstrate that baicalein is a potential chemotherapeutic agent.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksana, Republic of Korea
| | - Jawun Choi
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksana, Republic of Korea
| | - Hye-Kang Jung
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksana, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksana, Republic of Korea
| | - Chan Kim
- CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksana, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksana, Republic of Korea
| |
Collapse
|
8
|
Haim Y, Blüher M, Konrad D, Goldstein N, Klöting N, Harman-Boehm I, Kirshtein B, Ginsberg D, Tarnovscki T, Gepner Y, Shai I, Rudich A. ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype. Mol Metab 2017; 6:725-736. [PMID: 28702328 PMCID: PMC5485239 DOI: 10.1016/j.molmet.2017.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Obesity variably disrupts human health, but molecular-based patients' health-risk stratification is limited. Adipose tissue (AT) stresses may link obesity with metabolic dysfunction, but how they signal in humans remains poorly-characterized. We hypothesized that a transcriptional AT stress-signaling cascade involving E2F1 and ASK1 (MAP3K5) molecularly defines high-risk obese subtype. METHODS ASK1 expression in human AT biopsies was determined by real-time PCR analysis, and chromatin immunoprecipitation (ChIP) adopted to AT explants was used to evaluate the binding of E2F1 to the ASK1 promoter. Dual luciferase assay was used to measure ASK1 promoter activity in HEK293 cells. Effects of E2F1 knockout/knockdown in adipocytes was assessed utilizing mouse-embryonal-fibroblasts (MEF)-derived adipocyte-like cells from WT and E2F1-/- mice and by siRNA, respectively. ASK1 depletion in adipocytes was studied in MEF-derived adipocyte-like cells from WT and adipose tissue-specific ASK1 knockout mice (ASK1-ATKO). RESULTS Human visceral-AT ASK1 mRNA (N = 436) was associated with parameters of obesity-related cardio-metabolic morbidity. Adjustment for E2F1 expression attenuated the association of ASK1 with fasting glucose, insulin resistance, circulating IL-6, and lipids (triglycerides, HDL-cholesterol), even after adjusting for BMI. Chromatin-immunoprecipitation in human-AT explants revealed BMI-associated increased occupancy of the ASK1 promoter by E2F1 (r2 = 0.847, p < 0.01). In adipocytes, siRNA-mediated E2F1-knockdown, and MEF-derived adipocytes of E2F1-knockout mice, demonstrated decreased ASK1 expression and signaling to JNK. Mutation/truncation of an E2F1 binding site in hASK1 promoter decreased E2F1-induced ASK1 promoter activity, whereas E2F1-mediated sensitization of ASK1 promoter to further activation by TNFα was inhibited by JNK-inhibitor. Finally, MEF-derived adipocytes from adipocyte-specific ASK1-knockout mice exhibited lower leptin and higher adiponectin expression and secretion, and resistance to the effects of TNFα. CONCLUSIONS AT E2F1 -ASK1 molecularly defines a metabolically-detrimental obese sub-phenotype. Functionally, it may negatively affect AT endocrine function, linking AT stress to whole-body metabolic dysfunction.
Collapse
Affiliation(s)
- Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Nir Goldstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
| | - Nora Klöting
- Department of Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Ilana Harman-Boehm
- Diabetes Unit, Soroka Academic Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Boris Kirshtein
- Department of Surgery A, Soroka Academic Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Doron Ginsberg
- The Mina and Everard Goodman Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| | - Tanya Tarnovscki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
| | - Yftach Gepner
- Department of Epidemiology, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
| | - Iris Shai
- Department of Epidemiology, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84103, Israel
| |
Collapse
|