1
|
Capuano C, Moccia V, Molinari A, Torrigiani F, Ferro L, Ferraresso S, Bonsembiante F, Leo C, Zappulli V. Free circulating versus extracellular vesicle-associated microRNA expression in canine T-cell lymphoma. Front Vet Sci 2024; 11:1461506. [PMID: 39268522 PMCID: PMC11390581 DOI: 10.3389/fvets.2024.1461506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Canine lymphoma (cL) is one of the most frequent cancers in dogs. The T-cell lymphoma (TcL) is not the most common phenotype but presents an aggressive behavior. MicroRNAs (miRNAs), are small, single-stranded, non-coding RNA molecules which can circulate freely in blood or be associated with extracellular vesicles (EVs). The dysregulation of certain miRNAs has been identified in numerous types of human cancers and they have been largely investigated as possible tumors biomarkers in human medicine, while research in veterinary oncology is still scarce. The aim of this study was to compare the expression patterns of free circulating and EV-associated miRNAs in dogs with T-cell lymhoma (TcL) and healthy dogs. Methods Eight dogs with TcL were selected as the lymphoma group (LG) and eight dogs were included as controls (Ctrl). Plasma samples were collected at the time of the diagnosis and EVs isolated with ultracentrifugation. miRNAs were extracted from both the circulating EVs and the plasma supernatant, obtaining EV-associated and free-miRNAs. Quantitative real-time PCR was performed to analyze the expression of 88 target miRNAs. Results Ten and seven differentially expressed miRNAs between LG and Ctrl were detected in EV-associated and free-miRNAs, respectively. Among EV-associated and free-miRNAs, only has-miR-222-3p was overexpressed in both conditions. Discussion All the differentially expressed miRNAs detected in this study, have been already described as dysregulated in other human or canine cancers. The EV-associated miRNAs, which appear to be more stable and better conserved than free-miRNAs, could be investigated in further larger studies to better assess their use as possible biomarkers for TcL.
Collapse
Affiliation(s)
- Cecilia Capuano
- Anicura Istituto Veterinario di Novara, Granozzo Monticello, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Antonella Molinari
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Livia Ferro
- Anicura Istituto Veterinario di Novara, Granozzo Monticello, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Chiara Leo
- Anicura Istituto Veterinario di Novara, Granozzo Monticello, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
2
|
Carkic J, Nikolic N, Sango V, Riberti N, Anicic B, Milasin J. MiR-26a and miR-191 are upregulated while PLAG1 and HIF2 are downregulated in pleomorphic adenomas of the salivary glands compared to Warthin tumors. J Oral Pathol Med 2024; 53:451-457. [PMID: 38853518 DOI: 10.1111/jop.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Salivary gland tumors (SGTs) are a heterogenous group of pathologies, which still represents a challenge regarding differential diagnosis and therapy. Although histological findings govern SGTs management, detection of molecular alterations is emerging as an effective additional tool. The aim of this study was to analyze the relative expression levels of three micro RNAs (miR-26a, miR-26b, and miR-191), and three pro-oncogenic molecular markers (PLAG1, MTDH, and HIF2) in SGTs and normal salivary gland (NSG) tissues and evaluate them as potential differential diagnosis markers. METHODS This cross-sectional study included 58 patients with SGTs (23 pleomorphic adenomas, 27 Warthin tumors, and 8 malignant SGTs) and 10 controls (normal salivary gland tissues). Relative gene expression levels of all investigated molecules were determined by reverse transcriptase-real-time polymerase chain reaction. RESULTS All three micro RNAs exhibited highest expression levels in benign SGTs, whereas miR-26a And miR-191 were significantly more expressed in PAs compared to WTs (p = 0.045 and p = 0.029, respectively). PLAG1 And HIF2 were both overexpressed in WTs compared to PAs (p = 0.048 and p = 0.053, respectively). Bioinformatic analysis suggested that all investigated micro RNAs function as negative regulators of MTDH. CONCLUSION The results of this study suggest that all three micro RNAs have a considerable negative impact on MTDH oncogene expression in malignant tumors, while the differences between levels of miR-26a, miR-191, PLAG1, and HIF2 in PA and WT represent possible differential diagnosis markers.
Collapse
Affiliation(s)
- Jelena Carkic
- School of Dental Medicine, Implant Research Center, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- School of Dental Medicine, Implant Research Center, University of Belgrade, Belgrade, Serbia
| | - Violeta Sango
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nicole Riberti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Boban Anicic
- School of Dental Medicine, Clinic for Maxillofacial Surgery, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Ni J, Xi X, Xiao S, Xiao X. Tumor Cell-Derived Exosomal miR-191-5p Activates M2-Subtype Macrophages Through SOCS3 to Facilitate Breast Cancer. Mol Biotechnol 2024; 66:1314-1325. [PMID: 38270757 DOI: 10.1007/s12033-023-01034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
Differential activation of macrophages is associated with poor progression of breast cancer (BC). Many reports have elucidated the important involvement of exosomes produced by cancer cells in remodeling the macrophage activation phenotype to promote tumor expansion and invasion. However, the underlying mechanisms by which exosomes secreted by BC cells facilitate macrophage M2 polarization remain enigmatic and worth exploring. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate miR-191-5p expression in BC tumor tissues and cells. Cell counting kit 8 (CCK-8), transwell, and flow cytometry were applied to assess the functional role of miR-191-5p in BC. Isolated nano-vesicles were identified using transmission electron microscopy and western blotting. We also observed that miR-191-5p was significantly elevated in BC clinical samples and that inhibition of miR-191-5p hindered the growth and metastasis of BC cells. Importantly, BC cells successfully accelerated macrophage M2-like polarization by directly transferring exosomes to macrophages, resulting in increased miR-191-5p levels in macrophages. Mechanistically, exosomal miR-191-5p directly inhibited the suppressors of cytokine signaling 3 (SOCS3) expression in macrophages and aggravated macrophage M2 polarization. Similarly, si-SOCS3 transfected macrophages boosted BC cell migration and invasion in a positive feedback manner. Overall, our results manifested a pro-growth and pro-metastatic role between the two cells by elucidating the crucial role of exosomal miR-191-5p in stimulating M2 macrophage polarization and mediating communication between BC cells and macrophages. These findings opened up new horizons for the development of BC therapeutic strategies.
Collapse
Affiliation(s)
- Jun Ni
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Xun Xi
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Sujian Xiao
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Xigang Xiao
- Department of General Surgery, People's Hospital of Ganzhou City, No.16, Meiguan Road, Ganzhou, 314000, Jiangxi, China.
| |
Collapse
|
4
|
Wang Z, Guan W, Ma Y, Zhou X, Song G, Wei J, Wang C. MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 2023; 23:668. [PMID: 37460940 PMCID: PMC10351167 DOI: 10.1186/s12885-023-11113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of β-catenin and its downstream gene through targeting PLCD1. CONCLUSION MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Zekun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenzhao Guan
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Ma
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianing Wei
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Pan L, Liu W, Zhao H, Chen B, Yue X. MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technol Health Care 2023; 31:2251-2265. [PMID: 37545272 DOI: 10.3233/thc-230217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) exert certain functions in the development of several cancers and can be a potential hallmark for cancer diagnosis and prognosis. MiR-191-5p has been proven to have high expression in breast cancer (BC), while its biological role and potential regulatory mechanisms in BC remain an open issue. OBJECTIVE Bioinformatics was utilized to assay miR-191-5p level in BC tissues and predict its downstream target gene as well as the enriched signaling pathways of the target gene. METHODS qRT-PCR was carried out to assay miR-191-5p and KLF6 levels in BC cells as well as miR-191-5p level in blood-derived exosomes from BC patients. Western blot was to examine the expression of proteins linked with cell adhesion, epithelial-mesenchymal transition (EMT), and exosome markers. A dual luciferase reporter assay was utilized to verify the interaction between miR-191-5p and KLF6. Abilities of cell phenotypes of BC cells were detected by CCK8, Transwell, and cell adhesion assay, separately. RESULTS Upregulated miR-191-5p expression and downregulated KLF6 expression were observed in BC cells. There was a targeting relationship between miR-191-5p and KLF6. MiR-191-5p negatively regulated KLF6 to promote EMT and malignant progression of BC cells. Additionally, we described a dramatically high level of miR-191-5p in the blood exosomes of BC patients. CONCLUSION MiR-191-5p advances the EMT of BC by targeting KLF6, indicating that miR-191-5p and KLF6 may be new biomarkers for BC.
Collapse
|
6
|
Wen D, Ren X, Li H, He Y, Hong Y, Cao J, Zheng C, Dong L, Li X. Low expression of RBP4 in the vitreous humour of patients with proliferative diabetic retinopathy who underwent Conbercept intravitreal injection. Exp Eye Res 2022; 225:109197. [PMID: 35932904 DOI: 10.1016/j.exer.2022.109197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022]
Abstract
Intravitreal injection of anti-VEGF antibodies has been widely used in the treatment of proliferative diabetic retinopathy (PDR). However, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment. To explore proteins closely related to fibrosis, we conducted proteomic analysis of human vitreous humour collected from PDR patients who have or have not intravitreal Conbercept (IVC) injection. Sixteen vitreous humour samples from PDR patients with preoperative IVC and 20 samples from those without preoperative IVC were examined. An immunodepletion kit was used to remove high-abundance vitreous proteins. Conbercept-induced changes were determined using a tandem mass tag-based quantitative proteomic strategy. Enzyme-linked immunosorbent assays were performed to confirm the concentrations of selected proteins and validate the proteomic results. Based on a false discovery rate between 0.05% and -0.05% and a fold-change > 1.5, 97 proteins were altered (49 higher levels and 48 lower levels) in response to IVC. Differentially expressed proteins were found in the extracellular and intracellular regions and were found to be involved in VEGF binding and VEGF-activated receptor activity. Protein-protein interactions indicated associations with fibrosis, neovascularisation and inflammatory signalling pathways. We found the low levels of RBP4 in the vitreous humour of PDR patients with IVC injection, as revealed by ELISA and proteomic profiling. Moreover, RBP4 significantly restored the mitochondrial function of HRMECs induced by AGEs and down regulated the level of glycolysis. Our study is the first to report that RBP4 decreases in the vitreous humour of PDR patients who underwent Conbercept treatment, thereby verifying the role of RBP4 in glucose metabolism. Results provide evidence for the potential mechanism underlying Conbercept-related fibrosis.
Collapse
Affiliation(s)
- Dejia Wen
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Xinjun Ren
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Hui Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Ye He
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Yaru Hong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Jingjing Cao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Chuanzhen Zheng
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Lijie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| | - Xiaorong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| |
Collapse
|
7
|
Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG, Tseng CJ. Next Generation Sequencing for Potential Regulated Genes and Micro-RNAs of Early Growth Response-1 in the Esophageal Squamous Cell Carcinoma. Protein J 2022; 41:563-571. [PMID: 36207572 DOI: 10.1007/s10930-022-10079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Esophageal cancer has a poor prognosis due to its aggressiveness and low survival rate. In Ease Asia, esophageal squamous cell carcinoma (ESCC) outnumbers esophageal adenocarcinoma (EAC). The ESCC patients still have high mortality despite modern surgical resection and neoadjuvant treatment. Determining patient and outcome prognostic factors is critical in ESCC treatment. In esophageal cancer, early growth response-1 (Egr-1) is a tumor suppressor gene, but the mechanism and associated genes are unknown. The study utilizes RNA interference method, the platform of Next Generation Sequencing (NGS) and bioinformatics analysis to investigate the influences after the Egr-1 gene slicing on the ESCC cells. The heat maps of differentially expressed mRNA and microRNAs were analyzed using the algorithm, Burrows-Wheller Aligner. The study showed that the expression of 51 mRNA and 26 microRNAs have significant changes in ESCC cells after Egr-1 knockdown. The KEGG enrichment analysis linked Egr-1-regulated genes and microRNAs. Egr-1 interactions with these genes and microRNAs may be important in tumor progression. In conclusions, this study provided the transcriptome patterns and relating pathway analysis for Egr-1 knockdown in ESCC cells. The mRNA and microRNAs altered by Egr-1 gene silencing might provide key information in the treatment of ESCC.
Collapse
Affiliation(s)
- Yen-Chiang Tseng
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist, Kaohsiung, 80424, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Hui-Min Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist, Kaohsiung, 81362, Taiwan
| | - Yi-Hsuan Lin
- Department of Family Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist, Kaohsiung, 81362, Taiwan.
| |
Collapse
|
8
|
Tseng YC, Shu CW, Chang HM, Lin YH, Tseng YH, Hsu HS, Goan YG, Tseng CJ. Assessment of Early Growth Response 1 in Tumor Suppression of Esophageal Squamous Cell Carcinoma. J Clin Med 2022; 11:jcm11195792. [PMID: 36233659 PMCID: PMC9572560 DOI: 10.3390/jcm11195792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is associated with poor survival despite surgical resection, and its pathogenesis has been broadly investigated in the past decade. Early growth response 1 (EGR-1) could involve regulating tumor development in ESCC cells. Methods: An attempt was made to examine the molecular and cellular influence of EGR-1 in esophageal cancer cells by RNA extraction, real-time PCR (qRT-PCR), cell culture, small interfering RNA (siRNA) knockdown, western blot, migration assay, and cell viability assay. One hundred and forty-four samples of ESCC were collected from our hospital and analyzed. Significantly higher EGR-1 expression was noted in tumor-adjacent normal tissue compared with tumor lesions. Results: The univariate analysis showed no significant impacts of EGR-1 expression on patients’ survival. However, after adjusting for the pathological stage, patients with EGR-1 expression > 68th percentile had lower risks of cancer-related death. Moreover, knockdown of EGR-1 significantly enhanced cell migration, invasion, and resistance to chemotherapeutic agents in two ESCC cell lines. Conclusions: EGR-1 plays a key role in tumor suppression involving tumor viability suppression and reflects the treatment effect of current chemotherapy for ESCC.
Collapse
Affiliation(s)
- Yen-Chiang Tseng
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chih-Wen Shu
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (C.-J.T.); Tel.: +886-7-3422121 (ext. 1505) (C.-J.T.); Fax: +886-7-3422288 (C.-J.T.)
| | - Hui-Min Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Yi-Hsuan Lin
- Department of Family Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Correspondence: (C.-W.S.); (C.-J.T.); Tel.: +886-7-3422121 (ext. 1505) (C.-J.T.); Fax: +886-7-3422288 (C.-J.T.)
| |
Collapse
|
9
|
Liu W, Ying N, Rao X, Chen X. MiR-942-3p as a Potential Prognostic Marker of Gastric Cancer Associated with AR and MAPK/ERK Signaling Pathway. Curr Issues Mol Biol 2022; 44:3835-3848. [PMID: 36135175 PMCID: PMC9498168 DOI: 10.3390/cimb44090263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Gastric cancer is a common tumor with high morbidity and mortality. MicroRNA (miRNA) can regulate gene expression at the translation level and various tumorigenesis processes, playing an important role in tumor occurrence and prognosis. This study aims to screen miRNA associated with gastric cancer prognosis as biomarkers and explore the regulatory genes and related signaling pathways. In this work, R language was used for the standardization and differential analysis of miRNA and mRNA expression profiles. Samples were randomly divided into a testing group and a training group. Subsequently, we built the five miRNAs (has-miR-9-3p, has-miR-135b-3p, has-miR-143-5p, has-miR-942-3p, has-miR-196-3p) prognostic modules, verified and evaluated their prediction ability by the Cox regression analysis. They can be used as an independent factor in the prognosis of gastric cancer. By predicting and analyzing potential biological functions of the miRNA target genes, this study found that the AR gene was not only a hub gene in the PPI network, but also associated with excessive survival of patients. In conclusion, this study demonstrated that hsa-miR-942-3p could be a potential prognostic marker of gastric cancer associated with the AR and MAPK/ERK signaling pathways. The results of this study provide insights into the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Nanjiao Ying
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (N.Y.); (X.C.)
| | - Xin Rao
- School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaodong Chen
- School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (N.Y.); (X.C.)
| |
Collapse
|
10
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:2448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
Chen S, Ju G, Gu J, Shi M, Wang Y, Wu X, Wang Q, Zheng L, Xiao T, Fan Y. Competing endogenous RNA network for esophageal cancer progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1473. [PMID: 34734025 PMCID: PMC8506737 DOI: 10.21037/atm-21-4478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Background Esophageal cancer (ESCA) constitutes one of the most common cancers worldwide. The identification of potential biomarkers is important to improving the diagnostic accuracy and treatment efficiency for patients with ESCA. In this study, we aimed to identify biomarkers related to ESCA progression through a comprehensive analysis of long non-coding RNAs (lncRNAs), microRNA (miRNAs), and mRNA expression profiles in ESCA. Methods Differentially expressed lncRNAs, miRNAs, and mRNAs (DElncRNAs, DEmiRNAs, and DEmRNAs, respectively) in ESCA samples compared with normal controls were obtained. A competing endogenous RNA (ceRNA) network consisting of interacting DElncRNAs, DEmiRNAs, and DEmRNAs was constructed using a combination of the miRCode and TargetScan databases. Relationships between RNAs in the ceRNA network and overall survival in patients with EC were explored through another independent ESCA dataset from The Cancer Genome Atlas. Results A total of 1,014 DElncRNAs, 3,677 DEmRNAs, and 35 DEmiRNAs were identified in ESCA samples compared with normal samples. Functional enrichment analysis indicated that the DEmRNAs were involved in cell activity, inflammatory response, and oxygen metabolism-related biological processes. A ceRNA network containing 5 DEmiRNAs, 582 DEmRNAs and 764 DElncRNAs was obtained. In the survival analysis, 39 genes were found to be significantly associated with overall survival in patients with EC, including GOLGA7, NFYB, TOP1, and TMTC3. Conclusions Our study constructed a ceRNA network for ESCA for the first time, which will be helpful for the disease’s diagnosis and treatment.
Collapse
Affiliation(s)
- Saihua Chen
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Guanjun Ju
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Jianmei Gu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yilang Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaodan Wu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Qing Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Liyun Zheng
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yihui Fan
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
12
|
Novel lncRNA Panel as for Prognosis in Esophageal Squamous Cell Carcinoma Based on ceRNA Network Mechanism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8020879. [PMID: 34603485 PMCID: PMC8486540 DOI: 10.1155/2021/8020879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Background The competitive endogenous RNA (ceRNA) mechanism has been discovered recently and regulating cancer-related gene expressions. The ceRNA network participates in multiple processes, such as cell proliferation and metastasis, and potentially drives the progression of cancer. In this study, we focus on the ceRNA networks of esophageal squamous cell carcinoma and discovered a novel biomarker panel for cancer prognosis. Methods RNA expression data of esophageal carcinoma from the TCGA database were achieved and constructed ceRNA network in esophageal carcinoma using R packages. Results Four miRNAs were discovered as the core of the ceRNA model, including miR-93, miR-191, miR-99b, and miR-3615. Moreover, we constructed a ceRNA network in esophageal carcinoma, which included 4 miRNAs and 6 lncRNAs. After ceRNA network modeling, we investigated six lncRNAs which could be taken together as a panel for prognosis prediction of esophageal cancer, including LINC02575, LINC01087, LINC01816, AL136162.1, AC012073.1, and AC117402.1. Finally, we tested the predictive power of the panel in all TCGA samples. Conclusions Our study discovered a new biomarker panel which may have potential values in the prediction of prognosis of esophageal carcinoma.
Collapse
|
13
|
Ke X, He L, Wang R, Shen J, Wang Z, Shen Y, Fan L, Shao J, Qi H. miR-377-3p-Mediated EGR1 Downregulation Promotes B[a]P-Induced Lung Tumorigenesis by Wnt/Beta-Catenin Transduction. Front Oncol 2021; 11:699004. [PMID: 34497759 PMCID: PMC8419355 DOI: 10.3389/fonc.2021.699004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), particularly benzo[a]pyrene (B[a]P), found in cigarette smoke and air pollution, is an important carcinogen. Nevertheless, early molecular events and related regulatory effects of B[a]P-mediated cell transformation and tumor initiation remain unclear. This study found that EGR1 was significantly downregulated during human bronchial epithelial cell transformation and mice lung carcinogenesis upon exposure to B[a]P and its active form BPDE, respectively. In contrast, overexpression of EGR1 inhibited the BPDE-induced cell malignant transformation. Moreover, miR-377-3p was strongly enhanced by BPDE/B[a]P exposure and crucial for the inhibition of EGR1 expression by targeting the 3'UTR of EGR1. MiR-377-3p antagomir reversed the effect of EGR1 downregulation in cell malignant transformation and tumor initiation models. Furthermore, the B[a]P-induced molecular changes were evaluated by IHC in clinical lung cancer tissues and examined with a clinic database. Mechanistically, EGR1 inhibition was also involved in the regulation of Wnt/β-catenin transduction, promoting lung tumorigenesis following B[a]P/BPDE exposure. Taken together, the results demonstrated that bBenzo[a]pyrene exposure might induce lung tumorigenesis through miR-377-3p-mediated reduction of EGR1 expression, suggesting an important role of EGR1 in PAHs-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Xinxin Ke
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lulu He
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Runan Wang
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Shen
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyang Wang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yifei Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, and Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Bioinformatics-based analysis of the lncRNA-miRNA-mRNA and TF regulatory networks reveals functional genes in esophageal squamous cell carcinoma. Biosci Rep 2021; 40:225786. [PMID: 32662828 PMCID: PMC7441485 DOI: 10.1042/bsr20201727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a 5-year survival rate unsatisfied malignancies. The study aimed to identify the novel diagnostic and prognostic targets for ESCC. Expression profiling (GSE89102, GSE97051, and GSE59973) data were downloaded from the GEO database. Then, differentially expressed (DE) lncRNAs, DEmiRNAs, and genes (DEGs) with P-values < 0.05, and |log2FC| ≥ 2, were identified using GEO2R. Functional enrichment analysis of miRNA-related mRNAs and lncRNA co-expressed mRNA was performed. LncRNA–miRNA–mRNA, protein–protein interaction of miRNA-related mRNAs and DEGs, co-expression, and transcription factors-hub genes network were constructed. The transcriptional data, the diagnostic and prognostic value of hub genes were estimated with ONCOMINE, receiver operating characteristic (ROC) analyses, and Kaplan–Meier plotter, respectively. Also, the expressions of hub genes were assessed through qPCR and Western blot assays. The CDK1, VEGFA, PRDM10, RUNX1, CDK6, HSP90AA1, MYC, EGR1, and SOX2 used as hub genes. And among them, PRDM10, RUNX1, and CDK6 predicted worse overall survival (OS) in ESCC patients. Our results showed that the hub genes were significantly up-regulated in ESCA primary tumor tissues and cell lines, and exhibited excellent diagnostic efficiency. These results suggest that the hub genes may server as potential targets for the diagnosis and treatment of ESCC.
Collapse
|
15
|
Yang C, Ota-Kurogi N, Ikeda K, Okumura T, Horie-Inoue K, Takeda S, Inoue S. MicroRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC. J Biochem 2021; 168:7-14. [PMID: 32003827 DOI: 10.1093/jb/mvaa014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is a common gynecological malignancy with relatively favourable prognosis, although alternative diagnostic and therapeutic options remain to be explored for advanced disease. Recent studies enabled to apply microRNAs (miRs) to clinical cancer management as promising diagnostic and therapeutic biomarkers. We here aimed to identify proliferation-associated miRNAs and characterize their functions in EC cells. Our small RNA-sequencing analysis showed that miR-191 is abundantly expressed in HEC-1A and Ishikawa EC cells along with the high expression of miR-182, which was previously characterized as an EC proliferation-related miRNA in EC. We showed that miR-191 was upregulated in EC tissues than in adjacent normal tissues and its knockdown repressed EC cell proliferation. In silico miRNA target screening identified that ten-eleven translocation 1 (TET1) is one of the putative miR-191 targets. TET1 expression could be downregulated by miR-191 through the mRNA-miRNA interaction in the 3'-untranslated region of TET1. In line with TET1 functions as a methylcytosine dioxygenase, which removes genome-wide DNA methylation marks, decreased TET1 expression resulted in hypermethylation in the promotor region of tumour suppressor adenomatous polyposis coli. Taken together, miR-191 could function as an oncogenic miRNA in EC and serve as a prospective diagnostic and therapeutic target for advanced disease.
Collapse
Affiliation(s)
- Chiujung Yang
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Natsuki Ota-Kurogi
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
16
|
Ashirbekov Y, Abaildayev A, Omarbayeva N, Botbayev D, Belkozhayev A, Askandirova A, Neupokoyeva A, Utegenova G, Sharipov K, Aitkhozhina N. Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ 2020; 8:e10494. [PMID: 33362968 PMCID: PMC7749656 DOI: 10.7717/peerj.10494] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer among women worldwide. At present, there is a need to search for new, accurate, reliable, minimally invasive and cheap biomarkers in addition to existing methods for the diagnosis and prognosis of BC. The main goal of this study was to test the diagnostic value of six circulating miRNAs in Kazakh women. Materials and methods TaqMan-based miRNA profiling was conducted using plasma specimens from 35 BC women patients and 33 healthy women samples (control group). Results The level of all seven miRNAs (including endogenous control) normalized by synthetic cel-miR-39 were significantly elevated in the group of BC patients. Normalization using miR-222-3p as endogenous control reduced differences in level of miRNAs between groups; as a result, only three miRNAs were significantly upregulated in the group of BC patients—miR-145-5p (P = 6.5e−12), miR-191-5p (P = 3.7e−10) and miR-21-5p (P = 0.0034). Moreover, ROC analysis showed that the use of miR-145-5p and miR-191-5p, both individually (AUC = 0.931 and 0.904, respectively) or in combination (AUC = 0.984), allows to accurately differentiate BC patients from healthy individuals. Conclusions Two plasma miRNAs—miR-145-5p and miR-191-5p—are potential biomarkers for diagnosis of BC in the Kazakh population. The findings need to be further substantiated using a more representative sample.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arman Abaildayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nazgul Omarbayeva
- Kazakh Research Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Dauren Botbayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Ayaz Belkozhayev
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Anel Askandirova
- Kazakh Research Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Alena Neupokoyeva
- Almaty Branch of National Center for Biotechnology, Almaty, Kazakhstan
| | | | - Kamalidin Sharipov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nagima Aitkhozhina
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| |
Collapse
|
17
|
Yang G, Zhang Y, Yang J. A Five-microRNA Signature as Prognostic Biomarker in Colorectal Cancer by Bioinformatics Analysis. Front Oncol 2019; 9:1207. [PMID: 31799184 PMCID: PMC6863365 DOI: 10.3389/fonc.2019.01207] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Mounting evidence has demonstrated that a lot of miRNAs are overexpressed or downregulated in colorectal cancer (CRC) tissues and play a crucial role in tumorigenesis, invasion, and migration. The aim of our study was to screen new biomarkers related to CRC prognosis by bioinformatics analysis. By using the R language edgeR package for the differential analysis and standardization of miRNA expression profiles from The Cancer Genome Atlas (TCGA), 502 differentially expressed miRNAs (343 up-regulated, 159 down-regulated) were screened based on the cut-off criteria of p < 0.05 and |log2FC|>1, then all the patients (421) with differentially expressed miRNAs and complete survival time, status were then randomly divided into train group (212) and the test group (209). Eight miRNAs with p < 0.005 were revealed in univariate cox regression analysis of train group, then stepwise multivariate cox regression was applied for constituting a five-miRNA (hsa-miR-5091, hsa-miR-10b-3p, hsa-miR-9-5p, hsa-miR-187-3p, hsa-miR-32-5p) signature prognostic biomarkers with obviously different overall survival. Test group and entire group shown the same results utilizing the same prescient miRNA signature. The area under curve (AUC) of receiver operating characteristic (ROC) curve for predicting 5 years survival in train group, test group, and whole cohort were 0.79, 0.679, and 0.744, respectively, which demonstrated better predictive power of prognostic model. Furthermore, Univariate cox regression and multivariate cox regression considering other clinical factors displayed that the five-miRNA signature could serve as an independent prognostic factor. In order to predict the potential biological functions of five-miRNA signature, target genes of these five miRNAs were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) enrichment analysis. The top 10 hub genes (ESR1, ADCY9, MEF2C, NRXN1, ADCY5, FGF2, KITLG, GATA1, GRIA1, KAT2B) of target genes in protein protein interaction (PPI) network were screened by string database and Cytoscape 3.6.1 (plug-in cytoHubba). In addition, 19 of target genes were associated with survival prognosis. Taken together, the current study showed the model of five-miRNA signature could efficiently function as a novel and independent prognosis biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yujiao Zhang
- Respiratory Medicine, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, China
| | - Jiyuan Yang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
18
|
Zhen C, Huang J, Lu J. MicroRNA-652 inhibits the biological characteristics of esophageal squamous cell carcinoma by directly targeting fibroblast growth factor receptor 1. Exp Ther Med 2019; 18:4473-4480. [PMID: 31777550 DOI: 10.3892/etm.2019.8072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs) are dysregulated in esophageal squamous cell carcinoma (ESCC). Changes in miRNA expression may be associated with ESCC formation and progression. Therefore, the identification of ESCC-associated miRNAs may facilitate the development of effective therapeutic approaches for patients with ESCC. Recently, miRNA-652 (miR-652) was recognized as a cancer-associated miRNA in a number of different types of cancer. However, the expression status and roles of miR-652 in ESCC as well as the molecular mechanisms modulated or altered by it remain largely unknown. In the present study, it was demonstrated that miR-652 was downregulated in ESCC tissues and cell lines. Functional assays showed that upregulation of miR-652 expression decreased proliferation and invasion of ESCC cells. Mechanistically, fibroblast growth factor receptor 1 (FGFR1) was determined to be a direct target of miR-652 in ESCC cells. Additionally, FGFR1 was upregulated in ESCC tissues, and the expression of FGFR1 was inversely correlated with miR-652 expression. Furthermore, restoring FGFR1 expression abolished the suppressive effects of miR-652 overexpression on the proliferation and invasion of ESCC cells. These findings demonstrated that miR-652 inhibits the proliferation and invasion of ESCC cells by directly targeting FGFR1.
Collapse
Affiliation(s)
- Cheng Zhen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jingshan Huang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
19
|
Liu JB, Yan YJ, Shi J, Wu YB, Li YF, Dai LF, Ma XT. Upregulation of microRNA-191 can serve as an independent prognostic marker for poor survival in prostate cancer. Medicine (Baltimore) 2019; 98:e16193. [PMID: 31335671 PMCID: PMC6709308 DOI: 10.1097/md.0000000000016193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
MicroRNA-191 (miR-191) has been identified as being upregulated in several types of cancers, and plays the role of oncogene. The expression of miR-191 has been found to be upregulated in prostate cancer tissues as well as cell lines. In this study, we analyzed the correlation of miR-191 expression with clinicopathologic factors and prognosis in prostate cancer.Prostate cancer tissue samples and adjacent normal prostate tissue samples were collected from 146 patients who underwent laparoscopic radical prostatectomy between April 2013 and March 2018. Student two-tailed t-test was used for comparisons of 2 independent groups. The relationships between miR-191 expression and different clinicopathological characteristics were evaluated using the Chi-squared test. Kaplan-Meier survival plots and log-rank tests were used to assess the differences in overall survival of the different subgroups of prostate cancer patients.miR-191 expression was significantly higher in prostate cancer tissues compared with normal adjacent prostate tissues (P < .001). miR-191 expression was observed to be significantly correlated with Gleason score (P < .001), pelvic lymph node metastasis (P = .006), bone metastases (P < .001), and T stage (P = .005). Kaplan-Meier analysis showed that patients with higher levels of miR-191 had significantly poorer survival than those with lower expression of this miRNA in prostate cancer patients (log rank test, P = .011). Multivariate analysis revealed that miR-191 expression (hazard ratio [HR] = 2.311, 95% confidence interval, [CI]: 1.666-9.006; P = .027) was independently associated with the overall survival of prostate cancer patients.Our results demonstrated that miR-191 might serve as an independent prognostic indicator for prostate cancer patients.
Collapse
|
20
|
Wu HY, Li MW, Li QQ, Pang YY, Chen G, Lu HP, Pan SL. Elevation of miR-191-5p level and its potential signaling pathways in hepatocellular carcinoma: a study validated by microarray and in-house qRT-PCR with 1,291 clinical samples. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1439-1456. [PMID: 31933962 PMCID: PMC6947072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The miR-191-5p expression has been reported to increase in hepatocellular carcinoma (HCC), but its clinical value and exact role remain to be further clarified. Thus, a comprehensive analysis was performed in the current study to explore the underlying function of miR-191-5p in HCC. METHODS HCC-related expression data were collected to conduct a thorough analysis to determine the miR-191-5p expression and its clinical significance in HCC, including microarray data from the Gene Expression Omnibus and ArrayExpress database as well as quantitative real-time polymerase chain reaction (qRT-PCR) data of 178 matched clinical samples. The underlying relationship between miR-191-5p and HCC was also explored on the basis of a series of bioinformatics analyses. RESULTS The overall pooled meta-analysis showed an overexpression of miR-191-5p in the HCC samples (SMD=0.400, 95% CI=0.139-0.663, P=0.003), consistent with the detected result of the clinical HCC samples through the qRT-PCR analysis. Higher miR-191-5p levels were correlated with advanced TNM stages (III and IV), higher pathological grades, and metastasis. Functionally, 64 potential target genes were acquired for further mechanism analysis. Two pathways (p75 neurotrophin receptor and liver kinase B1-mediated signaling pathways), which were likely modulated by miR-191-5p, were regarded to be linked to the deterioration of HCC. Early growth response 1 and UBE2D3 were identified as the most likely targets for miR-191-5p in HCC and were commonly implied in the top enriched pathways and protein-protein network. CONCLUSIONS In summary, miR-191-5p may function as a tumor promoter miRNA of HCC, and the miR-191-5p inhibitor may contribute to the targeted HCC treatment in the future.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Mei-Wei Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi-Qi Li
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
21
|
Bi JG, Zheng JF, Li Q, Bao SY, Yu XF, Xu P, Liao CX. MicroRNA-181a-5p suppresses cell proliferation by targeting Egr1 and inhibiting Egr1/TGF-β/Smad pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2018; 106:107-116. [PMID: 30503931 DOI: 10.1016/j.biocel.2018.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality worldwide. Early growth response factor 1 (Egr1) plays a crucial role in cancer progression. However, its precise role in HCC has not been clear. Here, we identified the aggravating role of Egr1 in cell proliferation of HCC firstly. The expression of Egr1 was significantly increased in HCC tissues. Functionally, overexpression of Egr1 enhanced, whereas silenced Egr1 expression attenuated HCC cells proliferation in vitro. Mechanistically, up-regulated Egr1 induced cell proliferation through activating Transforming growth factor (TGF)-β1/Smad signaling pathway concomitantly with upregulation of p-Smad2 and p-Smad3. Secondly, miR-181a-5p was down-regulated in clinical HCC specimens and its expression was inversely correlated with Egr1 expression. Functionally, overexpression of miR-181a-5p inhibited, whereas decreased expression of miR-181a-5p promoted HCC cells proliferation in vitro. Furthermore, we demonstrated that miR-181a-5p overexpression directly suppressed Egr1, resulting in a down-regulated TGF-β1/Smad pathway. Besides, the silenced Egr1 expression could rescue the enhanced cell proliferation induced by miR-181a-5p inhibitor. Thus, we concluded that miR-181a-5p is a negative regulator of Egr1 that can suppress tumor proliferation in HCC through targeting Egr1/TGF-β1/Smad pathway, which may be a potential therapeutic approach of HCC.
Collapse
Affiliation(s)
- Jian-Gang Bi
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China.
| | - Jin-Feng Zheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Qi Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Shi-Yun Bao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Xiao-Fang Yu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Ping Xu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Cai-Xian Liao
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta-Analysis. Clin Transl Gastroenterol 2018; 9:203. [PMID: 30420592 PMCID: PMC6232177 DOI: 10.1038/s41424-018-0070-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Numerous articles have reported that abnormal expression levels of microRNAs (miRNAs) are related to the survival times of esophageal carcinoma (EC) patients, which contains esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Nevertheless, there has not been a comprehensive meta-analysis to assess the accurate prognostic value of miRNAs in EC. Methods Studies published in English up to April 12, 2018 that evaluated the correlation of the expression levels of miRNAs with overall survival (OS) in EC were identified by online searches in PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews performed by two independent authors. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate the correlation between OS and miRNA expression. HR ≥ 2 was considered cutoff for considering the miRNA as prognostic candidate. Results Forty-four pertinent articles with 22 miRNAs and 4310 EC patients were ultimately included. EC patients with tissue expression levels of high miR-21 or low miR-133a (HR = 2.48, 95% CI = 1.50–4.12), miR-133b (HR = 2.15, 95% CI = 1.27–3.62), miR-138 (HR = 2.27, 95% CI = 1.68–3.08), miR-203 (HR = 2.83, 95% CI = 1.35–5.95), miR-375 and miR-655 (HR = 2.66, 95% CI = 1.16–6.12) had significantly poorer OS (P < 0.05). In addition, EC patients with blood expression levels of high miR-21 (HR = 2.19, 95% CI = 1.31–3.68) and miR-223 had significantly shorter OS (P < 0.05). Conclusions In conclusion, tissue expression levels of miR-21, miR-133a, miR-133b, miR-138, miR-203, miR-375, and miR-655 and blood expression levels of miR-21 and miR-223 demonstrate significant prognostic value. Among them, the expression levels of miR-133a, miR-133b, miR-138, miR-203, and miR-655 in tissue and the expression level of miR-21 in blood are potential prognostic candidates for predicting OS in EC.
Collapse
|
23
|
Zhang C, Zhang CD, Ma MH, Dai DQ. Three-microRNA signature identified by bioinformatics analysis predicts prognosis of gastric cancer patients. World J Gastroenterol 2018; 24:1206-1215. [PMID: 29568201 PMCID: PMC5859223 DOI: 10.3748/wjg.v24.i11.1206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/25/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To identify multiple microRNAs (miRNAs) for predicting the prognosis of gastric cancer (GC) patients by bioinformatics analysis.
METHODS The original microarray dataset GSE93415, which included 20 GC and 20 tumor adjacent normal gastric mucosal tissues, was downloaded from the Gene Expression Omnibus database and used for screening differentially expressed miRNAs (DEMs). The cut-off criteria were P < 0.05 and fold change > 2.0. In addition, we acquired the miRNA expression profiles and clinical information of 361 GC patients from The Cancer Genome Atlas database to assess the prognostic role of the DEMs. The target genes of miRNAs were predicted using TargetScan, miRDB, miRWalk, and DIANA, and then the common target genes were selected for functional enrichment analysis.
RESULTS A total of 110 DEMs including 19 up-regulated and 91 down-regulated miRNAs were identified between 20 pairs of GC and tumor adjacent normal tissues, and the Kaplan-Meier survival analysis found that a three-miRNA signature (miR-145-3p, miR-125b-5p, and miR-99a-5p) had an obvious correlation with the survival of GC patients. Furthermore, univariate and multivariate Cox regression analyses indicated that the three-miRNA signature could be a significant prognostic marker in GC patients. The common target genes of the three miRNAs are added up to 108 and used for Gene Functional Enrichment analysis. Biological Process and Molecular Function analyses showed that the target genes are involved in cell recognition, gene silencing and nucleic acid binding, transcription factor activity, and transmembrane receptor activity. Cellular Component analysis revealed that the genes are portion of nucleus, chromatin silencing complex, and TORC1/2 complex. Biological Pathway analysis indicated that the genes participate in several cancer-related pathways, such as the focal adhesion, PI3K, and mTOR signaling pathways.
CONCLUSION This study justified that a three-miRNA signature could play a role in predicting the survival of GC patients.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Chun-Dong Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Ming-Hui Ma
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|