1
|
Akram R, Duarte Silva F, de Silva LNM, Gupta A, Basha A, Chhabra A. Three-Dimensional MRI of Foot and Ankle: Current Perspectives and Advantages Over 2D MRI. Semin Roentgenol 2024; 59:447-466. [PMID: 39490039 DOI: 10.1053/j.ro.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Rubeel Akram
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Anuj Gupta
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Adil Basha
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Sui H, Li J, Liu L, Lv Z, Zhang Y, Dai Y, Mo Z. Accelerating Knee MRI: 3D Modulated Flip-Angle Technique in Refocused Imaging with an Extended Echo Train and Compressed Sensing. J Pain Res 2022; 15:577-590. [PMID: 35241934 PMCID: PMC8887673 DOI: 10.2147/jpr.s345210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose The three-dimensional (3D) sequence of magnetic resonance imaging (MRI) plays a critical role in the imaging of musculoskeletal joints; however, its long acquisition time limits its clinical application. In such conditions, compressed sensing (CS) is introduced to accelerate MRI in clinical practice. We aimed to investigate the feasibility of an isotropic 3D variable-flip-angle fast spin echo (FSE) sequence with CS technique (CS-MATRIX) compared to conventional 2D sequences in knee imaging. Methods Images from different sequences of both the accelerated CS-MATRIX and the corresponding conventional acquisitions were prospectively analyzed and compared. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the structures within the knees were measured for quantitative analysis. The subjective image quality and diagnostic agreement were compared between CS-MATRIX and conventional 2D sequences. Quantitative and subjective image quality scores were statistically analyzed with the paired t-test and Wilcoxon signed-rank test, respectively. Diagnostic agreements of knee substructure were assessed using Cohen’s weighted kappa statistic. Results For quantitative analysis, images from the CS-MATRIX sequence showed a significantly higher SNR than T2-fs 2D sequences for visualizing cartilage, menisci, and ligaments, as well as a higher SNR than proton density (pd) 2D sequences for visualizing menisci and ligaments. There was no significant difference between CS-MATRIX and 2D T2-fs sequences in subjective image quality assessment. The diagnostic agreement was rated as moderate to very good between CS-MATRIX and 2D sequences. Conclusion This study demonstrates the feasibility and clinical potential of the CS-MATRIX sequence technique for detecting knee lesions The CS-MATRIX sequence allows for faster knee imaging than conventional 2D sequences, yielding similar image quality to 2D sequences.
Collapse
Affiliation(s)
- He Sui
- China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jin Li
- Jilin Province People’s Hospital, Changchun, People’s Republic of China
- The Department of Trauma Surgery, Shanghai Oriental Hospital, Shanghai, People's Republic of China
| | - Lin Liu
- China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhongwen Lv
- China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yunfei Zhang
- Central Research Institute, United Imaging Healthcare, Shanghai, 201800, People’s Republic of China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, 201800, People’s Republic of China
| | - Zhanhao Mo
- China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Zhanhao Mo, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Erdao District, Changchun, People’s Republic of China, Email
| |
Collapse
|
3
|
Lee S, Lee GY, Kim S, Park YB, Lee HJ. Clinical utility of fat-suppressed 3-dimensional controlled aliasing in parallel imaging results in higher acceleration sampling perfection with application optimized contrast using different flip angle evolutions MRI of the knee in adults. Br J Radiol 2020; 93:20190725. [PMID: 32516546 PMCID: PMC7446023 DOI: 10.1259/bjr.20190725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To compare htree-dimensional CAIPIRINHA SPACE and two-dimensional turbo spin echo (2D TSE) MRI in the diagnosis of knee pathology in symptomatic adult patients. METHODS From February to September in 2018, 120 patients who underwent a knee MRI using both 3D CAIPIRINHA SPACE and 2D TSE MRI were enrolled. The signal-to-noise ratios (SNRs) and contrast-to-noise ratio (CNR) of the 2D and 3D MRI were compared using a paired t-test. Two radiologists independently evaluated both 2D and 3D MRI images using scoring systems for the menisci, ligaments, and cartilage. Intermethod, inter- and intrareader agreements were determined using an intraclass correlation coefficient (ICC). The diagnostic performance of both methods was measured in 44 patients with arthroscopy. RESULTS The mean scan time of 3D CAIPIRINHA SPACE MRI (4' 43") was shorter than that of 2D TSE MRI (17' 27"). The mean SNR and CNR of 3D CAIPIRINHA SPACE was higher than those of 2D TSE MRI (mean difference, 3.97 of SNR and 1.58 of CNR; p < 0.001 and p = .038, respectively). Intermethod (ICC, 0.84-1.0) and inter-reader (ICC, 0.75-0.97), and intra-reader agreements (ICC, 0.87-1.0) were good or excellent. The diagnostic accuracy of 3D CAIPIRINHA SPACE sequence was equal for ligament (95.5%) and better for meniscal and cartilage evaluation (84.1% each), compared to 2D TSE MRI (79.5% each). CONCLUSION The fat-suppressed 3D CAIPIRINHA SPACE MRI maybe useful in clinical practice for the evaluation of the knee in place of the 2D conventional MRI protocol. ADVANCES IN KNOWLEDGE 1. The 3D CAIPIRINHA SPACE MRI of the knee joint may be acceptable to be used in clinical practice showing comparable imaging quality compared to conventional 2D TSE MRI.2. Compared with arthroscopic findings as the gold-standard, the diagnostic performance of 3D CAIPIRINHA SPACE MRI was equal or better for knee joint evaluation than that of 2D TSE MRI, as well as with shorter scan time.
Collapse
Affiliation(s)
- Seungho Lee
- Department of the Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Guen Young Lee
- Department of the Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Sujin Kim
- Department of the Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Yong-Beom Park
- Department of the orthopedic Surgery, Chung-Ang University Hospital, Seoul, Korea
| | - Han-Jun Lee
- Department of the orthopedic Surgery, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Shakoor D, Kijowski R, Guermazi A, Fritz J, Roemer FW, Jalali-Farahani S, Eng J, Demehri S. Diagnosis of Knee Meniscal Injuries by Using Three-dimensional MRI: A Systematic Review and Meta-Analysis of Diagnostic Performance. Radiology 2019; 290:435-445. [DOI: 10.1148/radiol.2018181212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Delaram Shakoor
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - Richard Kijowski
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - Ali Guermazi
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - Frank W. Roemer
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - Sahar Jalali-Farahani
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - John Eng
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| | - Shadpour Demehri
- From the Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N Caroline St, JHOC 4240, Baltimore, Md, 21287 (D.S., J.F., S.J.F., J.E., S.D.); Department of Radiology, University of Wisconsin, Clinical Science Center, Madison, Wis (R.K.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (A.G., F.W.R.); and Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany (F.W.R.)
| |
Collapse
|