1
|
Tulimilli SV, Karnik M, Bettadapura ADS, Sukocheva OA, Tse E, Kuppusamy G, Natraj SM, Madhunapantula SV. The tumor suppressor role and epigenetic regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in cancer and tumor microenvironment (TME). Pharmacol Ther 2025; 268:108826. [PMID: 39971253 DOI: 10.1016/j.pharmthera.2025.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Oxidative stress and inflammation may initiate carcinogenesis and facilitate metastasis via activation of pro-inflammatory signaling network. The side product of arachidonic acid processing by cyclooxygenase-2 (COX-2), the prostaglandin E2 (PGE2), plays a key role in various metabolic disorders and during inflammation-mediated tumorigenesis. It has been demonstrated that PGE2 increases the proliferation, migration, invasion, metastasis, and resistance of cancer cells to apoptosis and other forms of programmed cell death. The expression level of PGE2 metabolizing enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is often decreased in various malignancies. However, the role of 15-PGDH and PGE2 in the regulation of carcinogenesis remains controversial. Numerous cancer cell lines and mouse models have demonstrated the role of 15-PGDH as a tumor suppressor. Downregulation of 15-PGDH increased cancer cell proliferation, migration, anchorage independent growth, colony formation while overexpression reversed these effects, by inducing apoptosis and cell cycle arrest in vitro and in vivo. The expression of 15-PGDH is regulated by various mechanisms, including (a) epigenetic alterations (methylation of promoter region, histone deacetylases, microRNAs (miR-21, miR-26a/b, miR-106b-5p, miR-146b-3p, miR-155, miR-218-5p, and miR-620)); and (b) dysregulated oxidative stress and associated mediators (elevated levels of growth factors and proinflammatory cytokines (such as IL1β and TNFα)). Several transcription factors, such as HNF3β, β-catenin, Snail, Slug, can bind to 15-PGDH promoter region and downregulate the enzyme expression. In contrast, the expression of 15-PGDH can be upregulated by several anti-inflammatory cytokines and anti-cancer agents, such as IL10 and vitamin D. The functional activity of 15-PGDH protein can be modulated by signaling effectors and oxidative stress, including increased production of reactive oxygen species (ROS). However, the role of oxidative stress regulator protein, i.e., nuclear factor erythroid 2-related factor 2 (Nrf2), in the control of 15-PGDH expression remains unclear. This article provides insights and comprehensive overview of the tumor suppressor role of 15-PGDH in various cancers. Epigenetic and post-translational mechanisms regulating 15-PGDH expression and the role of novel ROS-Nrf2-15-PGDH axis were discussed and accented as potential drug targets.
Collapse
Affiliation(s)
- SubbaRao V Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center and ICMR Collaborating Center of Excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center and ICMR Collaborating Center of Excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center and ICMR Collaborating Center of Excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Olga A Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, CALHN, Port Rd, Adelaide, SA 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, CALHN, Port Rd, Adelaide, SA 5000, Australia.
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics (DST-FIST supported department), JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Ooty, Nilgiris, Tamil Nadu, India.
| | - Suma M Natraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center and ICMR Collaborating Center of Excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center and ICMR Collaborating Center of Excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
2
|
Lee JE, Zhong X, Lee JY, Surh YJ, Na HK. 15-Keto prostaglandin E2 induces heme oxygenase-1 expression through activation of Nrf2 in human colon epithelial CCD 841 CoN cells. Arch Biochem Biophys 2020; 679:108162. [DOI: 10.1016/j.abb.2019.108162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
3
|
The prostanoid pathway contains potential prognostic markers for glioblastoma. Prostaglandins Other Lipid Mediat 2018; 137:52-62. [PMID: 29966699 DOI: 10.1016/j.prostaglandins.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Prostanoids derived from the activity of cyclooxygenases and their respective synthases contribute to both active inflammation and immune response in the tumor microenvironment. Their synthesis, deactivation and role in glioma biology have not yet been fully explored and require further study. Using quantitative real time PCR, gas chromatography/ electron impact mass spectrometry and liquid chromatography/ electrospray ionization tandem mass spectrometry, we have further characterized the prostanoid pathway in grade IV glioblastoma (GBM). We observed significant correlations between high mRNA expression levels and poor patient survival for microsomal PGE synthase 1 (mPGES1) and prostaglandin reductase 1 (PTGR1). Conversely, high mRNA expression levels for 15-hydroxyprostaglandin dehydrogenase (15-HPGD) were correlated with better patient survival. GBMs had a higher quantity of the prostanoid precursor, arachidonic acid, versus grade II/III tumors and in GBMs a significant positive correlation was found between arachidonic acid and PGE2 content. GBMs also had higher concentrations of TXB2, PGD2, PGE2 and PGF2α versus grade II/III tumors. A significant decrease in survival was detected for high versus low PGE2, PGE2 + PGE2 deactivation products (PGEMs) and PGF2α in GBM patients. Our data show the potential importance of prostanoid metabolism in the progression towards GBM and provide evidence that higher PGE2 and PGF2α concentrations in the tumor are correlated with poorer patient survival. Our findings highlight the potential importance of the enzymes 15-HPGD and PTGR1 as prognostic biomarkers which could be used to predict survival outcome of patients with GBM.
Collapse
|