1
|
RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity. Int J Mol Sci 2019; 20:ijms20081994. [PMID: 31018569 PMCID: PMC6515335 DOI: 10.3390/ijms20081994] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced c-fos promoter activity. Notably, chemical inhibition of RSK2 signaling using kaempferol (a RSK2 inhibitor) or U0126 (a selective MEK inhibitor) suppressed EGF-induced c-fos promoter activity. Moreover, functional deletion of RSK2 by knockdown or knockout showed that RSK2 deficiency suppressed EGF-induced c-fos promoter activity, resulting in inhibition of AP-1 transactivation activity and Ras-mediated foci formation in NIH3T3 cells. Immunocytofluorescence assay demonstrated that RSK2 deficiency reduced ELK3 localization in the nucleus. In MDA-MB-231 breast cancer cells, knockdown of RSK2 or ELK3 suppressed cell proliferation with accumulation at the G1 cell cycle phase, resulting in inhibition of foci formation and anchorage-independent cancer colony growth in soft agar. Taken together, these results indicate that a novel RSK2/ELK3 signaling axis, by enhancing c-Fos-mediated AP-1 transactivation activity, has an essential role in cancer cell proliferation and colony growth.
Collapse
|
2
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 1000] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
3
|
RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells. Cell Biochem Biophys 2016; 71:1677-84. [PMID: 25388848 DOI: 10.1007/s12013-014-0390-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.
Collapse
|
4
|
Shneor D, Folberg R, Pe'er J, Honigman A, Frenkel S. Stable knockdown of CREB, HIF-1 and HIF-2 by replication-competent retroviruses abrogates the responses to hypoxia in hepatocellular carcinoma. Cancer Gene Ther 2016; 24:64-74. [PMID: 27934882 PMCID: PMC5339434 DOI: 10.1038/cgt.2016.68] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
Abstract
The fast proliferation of tumor cells develops faster than the vasculature, resulting, in most malignant tumors, in generation of hypoxic regions. Hypoxia renders solid tumors resistant to radiation and chemotherapeutics while providing opportunities for tumor-selective therapies targeting tumor hypoxia. Here we exploit two properties of tumors: propagation of tumor cells and ongoing generation of hypoxic regions to construct a system that preferentially leads to the death of tumor cells and thus hinders tumor growth. We constructed murine leukemia virus replication-competent (RCR) viruses that infect only propagating cells. These viruses express small hairpin RNAs (shRNAs) targeting cyclic AMP-response-element binding protein (CREB), hypoxia-inducible factors 1 (HIF)-1 or HIF-2 individually or all three together (X3). These viruses efficiently infected in vitro human hepatocellular carcinoma (HepG2 and FLC4) cells and established persistence of the virus and knocked down the expression of the regulators of the hypoxia-responding genes. Knockdown of either HIF-1 or CREB or both in hypoxia reduced the expression of hypoxia-response elements- and CRE-mediated gene expression, diminished cell proliferation and increased caspase-3 activity. We did not detect any significant effect of the efficiently knocked down HIF-2 on any of the functions tested in vitro. Moreover, severe combined immunodeficiency mice implanted subcutaneously with HepG2 stably infected with recombinant RCRs showed reduction of tumor growth and vascular endothelial growth factor expression, and no hypoxia-guided neovascularization. Combined treatment (RCRs+doxorubicin) improved efficacy in the context of in vitro hypoxia and in vivo (with either vACE-CREB or vACE-X3). This synergistic effect may lead to an improved efficacy and safety profile of the treatment that may result in fewer side effects.
Collapse
Affiliation(s)
- D Shneor
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - R Folberg
- Departments of Pathology, Ophthalmology and Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - J Pe'er
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Honigman
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - S Frenkel
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Lee JH, Hur W, Hong SW, Kim JH, Kim SM, Lee EB, Yoon SK. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α. Oncol Rep 2016; 37:813-822. [PMID: 27959451 DOI: 10.3892/or.2016.5293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may represent a novel therapeutic strategy for preventing HCC metastasis and invasion.
Collapse
Affiliation(s)
- Joon Ho Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Woo Hong
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Min Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Byul Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
The role of hypoxia inducible factor-1 in hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:409272. [PMID: 25101278 PMCID: PMC4101982 DOI: 10.1155/2014/409272] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia is a common feature of many solid tumors, including hepatocellular carcinoma (HCC). Hypoxia can promote tumor progression and induce radiation and chemotherapy resistance. As one of the major mediators of hypoxic response, hypoxia inducible factor-1 (HIF-1) has been shown to activate hypoxia-responsive genes, which are involved in multiple aspects of tumorigenesis and cancer progression, including proliferation, metabolism, angiogenesis, invasion, metastasis and therapy resistance. It has been demonstrated that a high level of HIF-1 in the HCC microenvironment leads to enhanced proliferation and survival of HCC cells. Accordingly, overexpression, of HIF-1 is associated with poor prognosis in HCC. In this review, we described the mechanism by which HIF-1 is regulated and how HIF-1 mediates the biological effects of hypoxia in tissues. We also summarized the latest findings concerning the role of HIF-1 in the development of HCC, which could shed light on new therapeutic approaches for the treatment of HCC.
Collapse
|
7
|
Wang B, Ding YM, Fan P, Wang B, Xu JH, Wang WX. Expression and significance of MMP2 and HIF-1α in hepatocellular carcinoma. Oncol Lett 2014; 8:539-546. [PMID: 25013467 PMCID: PMC4081179 DOI: 10.3892/ol.2014.2189] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/24/2014] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a serious threat to human health. HCC is a malignant tumor and its invasion and metastasis are the result of multigene interactions. Matrix metalloproteinase-2 (MMP-2) is capable of degrading the majority of components of the extracellular matrix and is regarded to closely correlate with tumor invasion and metastasis. Furthermore, the hypoxia-inducible factor 1α (HIF-1α) is an important transcription factor, which is closely associated with the process of tumor growth. The aim of the present study was to investigate the expression of MMP2 and HIF-1α) in HCC, and the relationship between MMP2/HIF-1α protein expression and the clinical/pathological characteristics of HCC. The mRNA levels of MMP2 and HIF-1α were detected in 32 cases of HCC and the corresponding normal adjacent tissues with fluorescence-based quantitative polymerase chain reaction (qPCR). The protein expression of MMP2 and HIF-1α was assessed in 45 HCC cases and 33 cases of corresponding normal adjacent tissue, using immunohistochemical methods. The association between MMP2/HIF-1α and pathological features of HCC, and the correlation between MMP2 and HIF-1α were analyzed. The Kaplan-Meier method was used to assess the impact of MMP2 and HIF-1α expression on survival. The fluorescence-based qPCR demonstrated that MMP2 and HIF-1α mRNA expression levels in the HCC tissues were 0.84±0.17 and 0.87±0.11, respectively, which were significantly higher than those in the adjacent normal tissues (0.70±0.13 and 0.68±0.13, respectively; P<0.05). Immunohistochemical analysis revealed that MMP2 and HIF-1α protein expression in the HCC tissues was 63.1 and 70.8%, respectively, which was also higher than that in the adjacent normal tissues (34.2 and 36.8%, respectively). There was no significant correlation between the expression of MMP2 or HIF-1α protein and the age or gender of patients with HCC (P>0.05). However, there was significant correlation between MMP2 or HIF-1α protein expression and tumor size, metastasis, presence of a capsule and clinical TNM staging of HCC. Their expression also had a significant effect on patient survival time. In conclusion, MMP2 and HIF-1α are overexpressed in HCC, and the MMP2 signaling pathway may promote the development of HCC together with HIF-1α.
Collapse
Affiliation(s)
- Bin Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - You-Ming Ding
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ping Fan
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Hui Xu
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Xing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Choi SH, Kwon OJ, Park JY, Kim DY, Ahn SH, Kim SU, Ro SW, Kim KS, Park JH, Kim S, Yun CO, Han KH. Inhibition of tumour angiogenesis and growth by small hairpin HIF-1α and IL-8 in hepatocellular carcinoma. Liver Int 2014; 34:632-642. [PMID: 24321089 DOI: 10.1111/liv.12375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 10/27/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hypoxia-inducible factor-1α (HIF-1α), a key transcription factor in the cellular response to hypoxia, and interleukin 8 (IL-8), a key mediator of angiogenesis, are important in cancerous tumour growth. In this study, we evaluated the effects of HIF-1α and IL-8 knockdown on angiogenesis and tumour growth in hepatocellular carcinoma (HCC). METHODS Hepatocellular carcinoma cell lines were infected with adenoviruses expressing small-hairpin RNA (shRNA) specific for HIF-1α or IL-8, cultured under hypoxic conditions (1% O2), and examined for their levels of HIF-1α, IL-8, and angiogenesis factors using immunoblot. The effects of adenovirus-mediated shRNA-induced HIF-1α and IL-8 knockdown on tumour growth and angiogenesis were also investigated in a subcutaneous Hep3B-tumour mouse model. RESULTS Hypoxia-inducible factor-1α knockdown directly repressed tumour growth, whereas IL-8 knockdown indirectly repressed tumour growth. Combined knockdown of HIF-1α and IL-8 increased survival rates of mice. HIF-1α and IL-8 knockdown also decreased microvessel density and tumour volume in vivo. Similarly, HIF-1α and IL-8 knockdown inhibited the angiogenic effects of HCC cell-conditioned media on tube formation and invasion by endothelial cells in vitro. CONCLUSION These findings indicate that shRNA-induced HIF-1α and IL-8 knockdown inhibit angiogenesis and tumour growth in HCC. Further development of HIF-1α and IL-8 shRNA technologies could lead to effective therapies for HCC.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Luo DJ, Wu JH. Roles of HIF-1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:1-8. [DOI: 10.11569/wcjd.v22.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia inducible factor-1 (HIF-1) is a key regulator of the cellular response to hypoxia. Since cell growth is out of control in hepatocellular carcinoma (HCC), HIF-1 activity is significantly enhanced in HCC to help cells adapt to the hypoxic microenvironment. HIF-1 plays a critical role in the occurrence and development of HCC through activating the target genes that participate in the regulation of cell proliferation and apoptosis, energy metabolism, angiogenesis, invasion and metastasis, resistance to chemotherapy and radiotherapy. Given the specific expression and regulation of HIF-1 in HCC growth, HIF-1 may become a new target for drug therapy and gene therapy, which provides a new avenue for neoadjuvant therapy of HCC in the future.
Collapse
|
10
|
Cui SY, Huang JY, Chen YT, Song HZ, Huang GC, De W, Wang R, Chen LB. The role of Aurora A in hypoxia-inducible factor 1α-promoting malignant phenotypes of hepatocelluar carcinoma. Cell Cycle 2013; 12:2849-66. [PMID: 23966163 DOI: 10.4161/cc.25916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overexpression of both hypoxia-inducible factor 1α (HIF-1α) and Aurora A has been found in hepatocellular carcinoma (HCC). However, whether HIF-1α and Aurora A synergistically promote malignant phenotypes of HCC cells is unknown. The purpose of this study was to investigate the roles and functional correlation of HIF-1α and Aurora A in HCC progression. Immunohistochemistry was performed to detect HIF-1α and Aurora A protein expression in 55 primary HCC and corresponding non-tumor tissues and their clinical significance. Gene knockout technology using short hairpin RNA (shRNA) was used to knockdown expression of HIF-1α or Aurora A and analyze their effects on malignant phenotypes of HCC cells. The transcriptional regulation of Aurora A by HIF-1α and the possible downstream molecular signaling pathways were also determined. Results showed that hypoxia could induce the increased expression of HIF-1α and Aurora A in HCC cells. Also, shRNA-mediated HIF-1α downregulation could lead to the decreased Aurora A expression and inhibition of growth or invasion in HCC cells. Moreover, HIF-1α could transcriptionally regulate Aurora A expression by binding to hypoxia-responsive elements in the Aurora A promoter and recruiting the coactivator-p300/CBP. Additionally, shRNA-mediated Aurora A knockdown could mimic the effects of HIF-1α downregulation on phenotypes of HCC cells, and overexpression of Aurora A could partially rescue the phenotypical changes of HCC cells induced by HIF-1α downregulation. Further research indicated that activation of Akt and p38-MAPK signaling pathways mediated the downstream effects of HIF-1α and Aurora A in HCC cells under hypoxic condition. Taken together, our findings indicated that Aurora A might be a key regulator of HIF-1α-promoting malignant phenotypes of HCC by activation of Akt and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Shi-Yun Cui
- Department of Medical Oncology; Jinling Hospital; School of Medicine; Nanjing University; Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal 2013; 25:403-416. [PMID: 23123499 DOI: 10.1016/j.cellsig.2012.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Abstract
Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | | | | | | | | | | |
Collapse
|
12
|
Kim JW. Hypoxia-inducible factor 1, hepatocellular carcinoma and angiogenesis. THE KOREAN JOURNAL OF HEPATOLOGY 2011; 16:278-9. [PMID: 20924209 PMCID: PMC3304598 DOI: 10.3350/kjhep.2010.16.3.278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|