1
|
Tingbø MG, Haugen Tunheim S, Klevan A, Kamisinska A, Behzaad H, Sandtrø A, Furevik A. Antigenic similarities and clinical cross-protection between variant and classic non-viscous strains of Moritella viscosa in Atlantic salmon in Norway. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109306. [PMID: 38122955 DOI: 10.1016/j.fsi.2023.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Moritella viscosa (M. viscosa) is one of the major etiological agents of winter-ulcers in Atlantic salmon (Salmo salar) in Norway. Outbreaks of ulcerative disease in farmed fish occur across the North Atlantic region, causing reduced animal welfare and economical challenges, and are of hindrance for sustainable growth within the industry. Commercially available multivalent core vaccines containing inactivated bacterin of M. viscosa reduce mortality and clinical signs related to winter ulcer disease. It has previously been described two major genetic clades within M. viscosa, typical (hereafter referred to as classic) and variant, based on gyrB sequencing. In addition, there are phenotypical traits such as viscosity that may differ between different types of isolates. Western blot using salmon plasma showed that classic non-viscous strains are antigenically different from the classic viscous type included in core vaccines. Further, Western blot also showed that there are similarities in binding patterns between Norwegian variant and classic non-viscous isolates, indicating they may be antigenically related. Vaccination-challenge trials using Norwegian gyrB-classic non-viscous isolates of M. viscosa, demonstrate that the isolates from the classic clade that are included in current commercial multivalent core vaccines, provide limited cross protection against the emerging non-viscous strains. However, a vaccine recently approved for marketing authorization in Norway, containing inactivated antigen of a variant M. viscosa strain, demonstrates reduced mortality as well as clinical signs caused by infections with the classic non-viscous M. viscosa isolated from outbreaks in Norwegian salmon farms. The study shows that there are antigenic similarities between variant and classic non-viscous types of M. viscosa, and these similarities are mirrored in the observed cross-protection in vaccination-challenge trials.
Collapse
Affiliation(s)
| | - Siv Haugen Tunheim
- PHARMAQ part of Zoetis, Oslo, Norway, P.O.Box 267, Skøyen, N-0213, Oslo, Norway.
| | - Are Klevan
- PHARMAQ part of Zoetis, Oslo, Norway, P.O.Box 267, Skøyen, N-0213, Oslo, Norway.
| | - Agnieszka Kamisinska
- PHARMAQ part of Zoetis, Oslo, Norway, P.O.Box 267, Skøyen, N-0213, Oslo, Norway.
| | - Helen Behzaad
- PHARMAQ part of Zoetis, Oslo, Norway, P.O.Box 267, Skøyen, N-0213, Oslo, Norway.
| | - Ane Sandtrø
- PHARMAQ part of Zoetis, Oslo, Norway, P.O.Box 267, Skøyen, N-0213, Oslo, Norway.
| | - Anette Furevik
- PHARMAQ part of Zoetis, Oslo, Norway, P.O.Box 267, Skøyen, N-0213, Oslo, Norway.
| |
Collapse
|
2
|
Ghasemieshkaftaki M, Cao T, Hossain A, Vasquez I, Santander J. Haemato-Immunological Response of Immunized Atlantic Salmon ( Salmo salar) to Moritella viscosa Challenge and Antigens. Vaccines (Basel) 2024; 12:70. [PMID: 38250883 PMCID: PMC10818610 DOI: 10.3390/vaccines12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Winter ulcer disease is a health issue in the Atlantic salmonid aquaculture industry, mainly caused by Moritella viscosa. Although vaccination is one of the effective ways to prevent bacterial outbreaks in the salmon farming industry, ulcer disease related to bacterial infections is being reported on Canada's Atlantic coast. Here, we studied the immune response of farmed immunized Atlantic salmon to bath and intraperitoneal (ip) M. viscosa challenges and evaluated the immunogenicity of M. viscosa cell components. IgM titers were determined after infection, post boost immunization, and post challenge with M. viscosa. IgM+ (B cell) in the spleen and blood cell populations were also identified and quantified by 3,3 dihexyloxacarbocyanine (DiOC6) and IgM-Texas red using confocal microscopy and flow cytometry. At 14 days post challenge, IgM was detected in the serum and spleen. There was a significant increase in circulating neutrophils 3 days after ip and bath challenges in the M. viscosa outer membrane vesicles (OMVs) boosted group compared to non-boosted. Lymphocytes increased in the blood at 7 and 14 days after the ip and bath challenges, respectively, in OMVs boosted group. Furthermore, a rise in IgM titers was detected in the OMVs boosted group. We determined that a commercial vaccine is effective against M. viscosa strain, and OMVs are the most immunogenic component of M. viscosa cells.
Collapse
Affiliation(s)
| | | | | | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (M.G.); (T.C.); (A.H.); (I.V.)
| |
Collapse
|
3
|
Furevik A, Tunheim SH, Heen V, Klevan A, Knutsen LE, Tandberg JI, Tingbo MG. New vaccination strategies are required for effective control of winter ulcer disease caused by emerging variant strains of Moritella viscosa in Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108784. [PMID: 37141956 DOI: 10.1016/j.fsi.2023.108784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Moritella viscosa is one on the major etiological agents of winter-ulcers in Atlantic salmon (Salmo salar) in Norway. Outbreaks of ulcerative disease in farmed fish occurs across the North Atlantic region and is an impeding factor for sustainable growth within the industry. Commercially available multivalent core vaccines containing inactivated bacterin of M. viscosa reduce mortality and clinical signs related to winter ulcer disease. Two major genetic clades within M. viscosa have previously been described based on gyrB sequencing, namely typical (hereafter referred to as classic) and variant. Vaccination-challenge trials using vaccines including either variant and or classic isolates of M. viscosa show that classic clade isolates included in current commercial multivalent core vaccines provide poor cross-protection against emerging variant strains, while variant strains confer high level of protection against variant M. viscosa but to a lesser extent to classic clade isolates. This demonstrates that future vaccine regimens should include a combination of strains from both clades.
Collapse
Affiliation(s)
- Anette Furevik
- PHARMAQ part of Zoetis, Oslo, Norway P.O.Box 267 Skøyen, N-0213, Oslo, Norway.
| | - Siv Haugen Tunheim
- PHARMAQ part of Zoetis, Oslo, Norway P.O.Box 267 Skøyen, N-0213, Oslo, Norway.
| | - Vegar Heen
- PHARMAQ part of Zoetis, Oslo, Norway P.O.Box 267 Skøyen, N-0213, Oslo, Norway.
| | - Are Klevan
- PHARMAQ part of Zoetis, Oslo, Norway P.O.Box 267 Skøyen, N-0213, Oslo, Norway.
| | - Linn Emilie Knutsen
- PHARMAQ part of Zoetis, Oslo, Norway P.O.Box 267 Skøyen, N-0213, Oslo, Norway.
| | | | | |
Collapse
|
4
|
Sørgaard M, Sveinsson K, Patel S, Nilsen HK, Olsen AB, Vaagnes Ø, Colquhoun DJ, Gulla S. MLVA genotyping of Moritella viscosa reveals serial emergence of novel, host-specific clonal complexes in Norwegian salmon farming. JOURNAL OF FISH DISEASES 2023; 46:535-543. [PMID: 36787245 DOI: 10.1111/jfd.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A Multi-Locus Variable number of tandem repeat Analysis (MLVA) genotyping scheme was developed for the epidemiological study of Moritella viscosa, which causes 'winter ulcer' predominantly in sea-reared Atlantic salmon (Salmo salar L.). The assay involves multiplex PCR amplification of six Variable Number of Tandem Repeat (VNTR) loci, followed by capillary electrophoresis and data interpretation. A collection of 747 spatiotemporally diverse M. viscosa isolates from nine fish species was analysed, the majority from farmed Norwegian salmon. MLVA distributed 76% of the isolates across three major clonal complexes (CC1, CC2 and CC3), with the remaining forming minor clusters and singletons. While 90% of the salmon isolates belong to either CC1, CC2 or CC3, only 20% of the isolates recovered from other fish species do so, indicating a considerable degree of host specificity. We further highlight a series of 'clonal shifts' amongst Norwegian salmon isolates over the 35-year sampling period, with CC1 showing exclusive predominance prior to the emergence of CC2, which was later supplanted by CC3, before the recent re-emergence of CC1. Apparently, these shifts have rapidly swept the entire Norwegian coastline and conceivably, as suggested by typing of a small number of non-Norwegian isolates, the Northeast Atlantic region as a whole.
Collapse
Affiliation(s)
| | | | - Sonal Patel
- Norwegian Veterinary Institute, Ås, Norway
- Vaxxinova Norway AS, Bergen, Norway
| | | | | | - Øyvind Vaagnes
- Vaxxinova Norway AS, Bergen, Norway
- Blue Analytics AS, Bergen, Norway
| | - Duncan J Colquhoun
- Norwegian Veterinary Institute, Ås, Norway
- University of Bergen, Bergen, Norway
| | | |
Collapse
|
5
|
Phaeohyphomycosis due to Exophiala in Aquarium-Housed Lumpfish ( Cyclopterus lumpus): Clinical Diagnosis and Description. Pathogens 2022; 11:pathogens11121401. [PMID: 36558735 PMCID: PMC9784618 DOI: 10.3390/pathogens11121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Phaeohyphomycosis caused by Exophiala species represents an important disease of concern for farmed and aquarium-housed fish. The objective of this study was to summarize the clinical findings and diagnosis of Exophiala infections in aquarium-housed Cyclopterus lumpus. Clinical records and postmortem pathology reports were reviewed for 15 individuals from 5 public aquaria in the United States and Canada from 2007 to 2015. Fish most commonly presented with cutaneous ulcers and progressive clinical decline despite topical or systemic antifungal therapy. Antemortem fungal culture of cutaneous lesions resulted in colonial growth for 7/12 samples from 8 individuals. Amplification of the internal transcribed spacer region (ITS) of nuclear rDNA identified Exophiala angulospora or Exophiala aquamarina in four samples from three individuals. Postmortem histopathologic findings were consistent with phaeohyphomycosis, with lesions most commonly found in the integument (11/15), gill (9/15), or kidney (9/15) and evidence of fungal angioinvasion and dissemination. DNA extraction and subsequent ITS sequencing from formalin-fixed paraffin-embedded tissues of seven individuals identified E. angulospora, E. aquamarina, or Cyphellophora sp. in four individuals. Lesion description, distribution, and Exophiala spp. identifications were similar to those reported in farmed C. lumpus. Antemortem clinical and diagnostic findings of phaeohyphomycosis attributable to several species of Exophiala provide insight on the progression of Exophiala infections in lumpfish that may contribute to management of the species in public aquaria and under culture conditions.
Collapse
|
6
|
Netzer R, Ribičić D, Aas M, Cavé L, Dhawan T. Absolute quantification of priority bacteria in aquaculture using digital PCR. J Microbiol Methods 2021; 183:106171. [PMID: 33610596 DOI: 10.1016/j.mimet.2021.106171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Modern aquaculture systems are designed for intensive rearing of fish or other species. Both land-based and offshore systems typically contain high loads of biomass and the water quality in these systems is of paramount importance for fish health and production. Microorganisms play a crucial role in removal of organic matter and nitrogen-recycling, production of toxic hydrogen sulfide (H2S), and can affect fish health directly if pathogenic for fish or exerting probiotic properties. Methods currently used in aquaculture for monitoring certain bacteria species numbers still have typically low precision, specificity, sensitivity and are time-consuming. Here, we demonstrate the use of Digital PCR as a powerful tool for absolute quantification of sulfate-reducing bacteria (SRB) and major pathogens in salmon aquaculture, Moritella viscosa, Yersinia ruckeri and Flavobacterium psychrophilum. In addition, an assay for quantification of Listeria monocytogenes, which is a human pathogen bacterium and relevant target associated with salmonid cultivation in recirculating systems and salmon processing, has been assessed. Sudden mass mortality incidents caused by H2S produced by SRB have become of major concern in closed aquaculture systems. An ultra-sensitive assay for quantification of SRB has been established using Desulfovibrio desulfuricans as reference strain. The use of TaqMan® probe technology allowed for the development of multi-plex assays capable of simultaneous quantification of these aquaculture priority bacteria. In single-plex assays, limit of detection was found to be at around 20 fg DNA for M. viscosa, Y. ruckeri and F. psychrophilum, and as low as 2 fg DNA for L. monocytogenes and D. desulfuricans.
Collapse
Affiliation(s)
- Roman Netzer
- SINTEF Ocean, Brattørkaia 17C, Trondheim 7010, Norway.
| | - Deni Ribičić
- SINTEF Ocean, Brattørkaia 17C, Trondheim 7010, Norway
| | - Marianne Aas
- SINTEF Ocean, Brattørkaia 17C, Trondheim 7010, Norway
| | - Laura Cavé
- Stilla Technologies, Biopark, 1, Mail du Professeur Georges Mathé, Villejuif, 94800, France
| | - Trisha Dhawan
- Stilla Technologies, Biopark, 1, Mail du Professeur Georges Mathé, Villejuif, 94800, France
| |
Collapse
|
7
|
Carvalho LA, Whyte SK, Braden LM, Purcell SL, Manning AJ, Muckle A, Fast MD. Impact of co-infection with Lepeophtheirus salmonis and Moritella viscosa on inflammatory and immune responses of Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2020; 43:459-473. [PMID: 32100325 DOI: 10.1111/jfd.13144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
This study was conducted to determine the effects of a co-infection with Moritella viscosa at different exposure levels of sea lice Lepeophtheirus salmonis in Atlantic salmon (Salmo salar). M. viscosa (1.14 × 106 cfu/ml) was introduced to all experimental tanks at 10 days post-lice infection (dpLs). Mean lice counts decreased over time in both the medium lice co-infection (31.5 ± 19.0 at 7 dpLs; 16.9 ± 9.3 at 46 dpLs) and high lice co-infection (62.0 ± 10.8 at 7 dpLs; 37.6 ± 11.3 at 46 dpLs). There were significantly higher mortalities and more severe skin lesions in the high lice co-infected group compared to medium lice co-infected group or M. viscosa-only infection. Quantitative gene expression analysis detected a significant upregulation of genes in skin from the high lice co-infection group consistent with severe inflammation (il-8, mmp-9, hep, saa). Skin lesions retrieved throughout the study were positive for M. viscosa growth, but these were rarely located in regions associated with lice. These results suggest that while M. viscosa infection itself may induce skin lesion development in salmon, co-infection with high numbers of lice can enhance this impact and significantly reduce the ability of these lesions to resolve, resulting in increased mortality.
Collapse
Affiliation(s)
- Laura A Carvalho
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Anthony J Manning
- Food Fisheries and Aquaculture Department, The New Brunswick Research and Productivity Council (RPC), Fredericton, NB, Canada
| | - Anne Muckle
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
8
|
Jia B, Delphino MKVC, Awosile B, Hewison T, Whittaker P, Morrison D, Kamaitis M, Siah A, Milligan B, Johnson SC, Gardner IA. Review of infectious agent occurrence in wild salmonids in British Columbia, Canada. JOURNAL OF FISH DISEASES 2020; 43:153-175. [PMID: 31742733 DOI: 10.1111/jfd.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Wild Pacific salmonids (WPS) are economically and culturally important to the Pacific North region. Most recently, some populations of WPS have been in decline. Of hypothesized factors contributing to the decline, infectious agents have been postulated to increase the risk of mortality in Pacific salmon. We present a literature review of both published journal and unpublished data to describe the distribution of infectious agents reported in wild Pacific salmonid populations in British Columbia (BC), Canada. We targeted 10 infectious agents, considered to potentially cause severe economic losses in Atlantic salmon or be of conservation concern for wild salmon in BC. The findings indicated a low frequency of infectious hematopoietic necrosis virus, piscine orthoreovirus, viral haemorrhagic septicaemia virus, Aeromonas salmonicida, Renibacterium salmoninarum, Piscirickettsia salmonis and other Rickettsia-like organisms, Yersinia ruckeri, Tenacibaculum maritimum and Moritella viscosa. No positive results were reported for infestations with Paramoeba perurans in peer-reviewed papers and the DFO Fish Pathology Program database. This review synthesizes existing information, as well as gaps therein, that can support the design and implementation of a long-term surveillance programme of infectious agents in wild salmonids in BC.
Collapse
Affiliation(s)
- Beibei Jia
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Marina K V C Delphino
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Babafela Awosile
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Tim Hewison
- Grieg Seafood BC Ltd., Campbell River, BC, Canada
| | | | | | | | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada (DFO), Nanaimo, BC, Canada
| | - Ian A Gardner
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
9
|
Klemetsen T, Willassen NP, Karlsen CR. Full-length 16S rRNA gene classification of Atlantic salmon bacteria and effects of using different 16S variable regions on community structure analysis. Microbiologyopen 2019; 8:e898. [PMID: 31271529 PMCID: PMC6813439 DOI: 10.1002/mbo3.898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding fish-microbial relationships may be of great value for fish producers as fish growth, development and welfare are influenced by the microbial community associated with the rearing systems and fish surfaces. Accurate methods to generate and analyze these microbial communities would be an important tool to help improve understanding of microbial effects in the industry. In this study, we performed taxonomic classification and determination of operational taxonomic units on Atlantic salmon microbiota by taking advantage of full-length 16S rRNA gene sequences. Skin mucus was dominated by the genera Flavobacterium and Psychrobacter. Intestinal samples were dominated by the genera Carnobacterium, Aeromonas, Mycoplasma and by sequences assigned to the order Clostridiales. Applying Sanger sequencing on the full-length bacterial 16S rRNA gene from the pool of 46 isolates obtained in this study showed a clear assignment of the PacBio full-length bacterial 16S rRNA gene sequences down to the genus level. One of the bottlenecks in comparing microbial profiles is that different studies use different 16S rRNA gene regions. Comparisons of sequence assignments between full-length and in silico derived variable 16S rRNA gene regions showed different microbial profiles with variable effects between phylogenetic groups and taxonomic ranks.
Collapse
Affiliation(s)
- Terje Klemetsen
- Department of Chemistry, Center for Bioinformatics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Department of Chemistry, Center for Bioinformatics, UiT The Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
10
|
Einarsdottir T, Sigurdardottir H, Bjornsdottir TS, Einarsdottir E. Moritella viscosa in lumpfish (Cyclopterus lumpus) and Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2018; 41:1751-1758. [PMID: 30132897 DOI: 10.1111/jfd.12884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Winter ulcer disease, caused by Moritella viscosa, is a significant problem in cold water salmonid farming, although the bacterium can infect and cause disease in a number of other fish species, such as lumpfish (Cyclopterus lumpus). Lumpfish are used as cleaner fish, to eat sea lice from Atlantic salmon (Salmo salar) in sea pens. It remains to be established whether M. viscosa can be transmitted between the fish species. In this study, we examined whether a salmon isolate of M. viscosa could infect and cause disease in lumpfish. We further examined whether a lumpfish isolate of M. viscosa could infect and cause disease in salmon. Finally, we examined whether vaccination of salmon with a salmon isolate of M. viscosa conferred protection against a lumpfish isolate. The data indicate that while lumpfish appeared to be resistant to a salmon isolate of M. viscosa, the salmon could be infected with a lumpfish isolate of M. viscosa. Vaccination protected the salmon against the salmon isolate of M. viscosa but did not confer sufficient protection to prevent infection with the lumpfish isolate.
Collapse
Affiliation(s)
- Thorbjorg Einarsdottir
- Institute for Experimental Pathology, University of Iceland, Reykjavik, Iceland
- BioMedical Center, University of Iceland, Reykjavik, Iceland
| | | | | | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
11
|
Karlsen C, Hjerde E, Klemetsen T, Willassen NP. Pan genome and CRISPR analyses of the bacterial fish pathogen Moritella viscosa. BMC Genomics 2017; 18:313. [PMID: 28427330 PMCID: PMC5399434 DOI: 10.1186/s12864-017-3693-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Winter-ulcer Moritella viscosa infections continue to be a significant burden in Atlantic salmon (Salmo salar L.) farming. M. viscosa comprises two main clusters that differ in genetic variation and phenotypes including virulence. Horizontal gene transfer through acquisition and loss of mobile genetic elements (MGEs) is a major driving force of bacterial diversification. To gain insight into genomic traits that could affect sublineage evolution within this bacterium we examined the genome sequences of twelve M. viscosa strains. Matches between M. viscosa clustered, regularly interspaced, short palindromic, repeats and associated cas genes (CRISPR-Cas) were analysed to correlate CRISPR-Cas with adaptive immunity against MGEs. RESULTS The comparative genomic analysis of M. viscosa isolates from across the North Atlantic region and from different fish species support delineation of M. viscosa into four phylogenetic lineages. The results showed that M. viscosa carries two distinct variants of the CRISPR-Cas subtype I-F systems and that CRISPR features follow the phylogenetic lineages. A subset of the spacer content match prophage and plasmid genes dispersed among the M. viscosa strains. Further analysis revealed that prophage and plasmid-like element distribution were reflected in the content of the CRISPR-spacer profiles. CONCLUSIONS Our data suggests that CRISPR-Cas mediated interactions with MGEs impact genome properties among M. viscosa, and that patterns in spacer and MGE distributions are linked to strain relationships.
Collapse
Affiliation(s)
- Christian Karlsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), Pb 8146 Dep., 0033, Oslo, Norway. .,Present address: Nofima AS, Division of Aquaculture, PO Box 210, Ås, N-1431, Norway.
| | - Erik Hjerde
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway
| | - Terje Klemetsen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway
| | - Nils Peder Willassen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway.,The Norwegian Structural Biology Centre, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
12
|
Host specificity and clade dependent distribution of putative virulence genes in Moritella viscosa. Microb Pathog 2014; 77:53-65. [PMID: 25277600 DOI: 10.1016/j.micpath.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Moritella viscosa is the aetiological agent of winter-ulcer disease in farmed salmonids in the North Atlantic. Previously, two major (typical and variant) genetic clades have been demonstrated within this bacterial species, one of which is almost solely related to disease in Atlantic salmon (Salmo salar). In the present study infection trials demonstrated that 'typical' M. viscosa isolated from Norwegian Atlantic salmon was highly virulent in this fish species but resulted in lower levels of mortality in rainbow trout. 'Variant' M. viscosa isolated from rainbow trout resulted in modest mortality levels in both Atlantic salmon and rainbow trout. To investigate the possible genetic background for inter-strain virulence differences, 38 M. viscosa isolates of diverse geographical origin and host species and a number of other Moritella spp. were investigated for the presence/absence of putative virulence related homologs. All isolates were positive for DNA sequences coding for; the Type VI secretion ATPase (clpV), hemolysin co-regulated protein (hcp), bacterioferritins (bfrA and bfrB), lectin (hemG), phospholipase D (pld), multifunctional autoprocessing repeats-in-toxin (martxA), aerolysin (aer), invasin (inv), and cytotoxic necrotizing factor (cnf), with the exception of one isolate in which cnf could not be confirmed. The product of an ABC transporter metal-binding lipoprotein (mat) was consistently detected although 11 isolates, all phylogenetically related, appear to produce a truncated version. A putative insecticidal toxin complex (mitABC) was detected almost exclusively in 'typical' Atlantic salmon isolates, and our data indicate that this complex of genes is expressed and co-transcribed. Transmission electron microscopy investigation revealed pili and flagella surface structures on nine M. viscosa representing both typical and variant isolates. Our results provide strong support for the existence of host specificity/high virulence in 'typical' M. viscosa related to Atlantic salmon. The gene distribution also provides further support for the genetic division within M. viscosa, and constitutes a basis for further study of the importance of the mitABC complex in winter-ulcer pathogenesis.
Collapse
|
13
|
Björnsson H, Marteinsson V, Friðjónsson Ó, Linke D, Benediktsdóttir E. Isolation and characterization of an antigen from the fish pathogen Moritella viscosa. J Appl Microbiol 2011; 111:17-25. [DOI: 10.1111/j.1365-2672.2011.05023.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|