1
|
Obert T, Zhang T, Rurik I, Vďačný P. Rediscovery and morpho-molecular characterization of three astome ciliates, with new insights into eco-evolutionary associations of astomes with their annelid hosts. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:231-255. [PMID: 40417250 PMCID: PMC12102460 DOI: 10.1007/s42995-024-00275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/11/2024] [Indexed: 05/27/2025]
Abstract
Astome ciliates live in the digestive tract of a broad spectrum of marine, freshwater, and terricolous annelids. In aquatic lumbriculid and criodrilid oligochaetes collected in Central Europe, we rediscovered three insufficiently known astomes: Hoplitophrya secans, Mesnilella clavata, and Buchneriella criodrili. Their morphology was studied using in vivo observation, protargol, and dry silver nitrate impregnation. Multiple nuclear and mitochondrial molecular markers were used to determine their phylogenetic positions and reconstruct their evolutionary history. According to our phylogenetic analyses: (1) mouthless ciliates isolated from annelids form a robustly supported monophylum within the class Oligohymenophorea, (2) the progenitor of astomes invaded the digestive tract of marine polychaetes during the Paleozoic era, (3) lumbricid earthworms likely served as a source of astomes for criodrilid, almid, and megascolecid earthworms, (4) the ancestral host of the earthworm-dwelling astome clade led an endogeic lifestyle, and (5) there were multiple independent transfers of astomes from endogeic to epigeic and anecic earthworms. These findings support previous views of the annelid phylogeny, suggesting that astomes reside and evolve in tandem with annelids for several hundred million years. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00275-5.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Tengyue Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002 China
| | - Ivan Rurik
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
2
|
Li B, Song Y, Wang X, Zhao Q, Liu M, Liu L, Pan X, Yi Z. A Reassessment of Phylogenetic Relationships in Class Oligohymenophorea (Protista, Ciliophora) Based on Updated Multigene Data. Ecol Evol 2025; 15:e70950. [PMID: 40008061 PMCID: PMC11850450 DOI: 10.1002/ece3.70950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Within the ciliate class Oligohymenophorea, many evolutionary relationships among taxa remain unresolved. This study incorporates 97 new sequences from 30 oligohymenophorean populations, including nuclear small subunit ribosomal (SSU-rRNA) genes, nuclear ITS1-5.8S-ITS2 rRNA regions, nuclear large subunit ribosomal (LSU-rRNA) genes, mitochondrial cytochrome oxidase c subunit I (cox 1) genes, and mitochondrial small subunit ribosomal RNA (mtSSU-rRNA) genes. With the addition of these new sequences, we performed comprehensive multigene phylogenetic analyses of Oligohymenophorea. The main findings are: (1) Utilizing multiple genes is instrumental in improving phylogenetic relationships within class Oligohymenophorea; (2) class Oligohymenophorea is divided into two distinct groups: (i) encompassing the subclass Hymenostomatia, Scuticociliatia, Apostomatia, Astomatia, and Urocentria; and (ii) comprising the subclasses Peniculia and Peritrichia; (3) Revising the phylogenetic placement of the subclass Urocentrida reveals its transitional role as a taxon between Group I and Group II. It emerges as a sister clade to Hymenostomatia; (4) the phylogenetic positions of Astomatia and Apostomatia within the clade 'SAA' become clearer; and (5) the order Loxocephalida represents an early member of Scuticociliatia and serves as a potential prototype for this taxonomic group. This study provides more information for understanding the evolutionary relationships within Oligohymenophorea.
Collapse
Affiliation(s)
- Bailin Li
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Yumeng Song
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Xiang Wang
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Qiyue Zhao
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Menghan Liu
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Lihui Liu
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Xuming Pan
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
3
|
Câmara PEAS, Pellizzari FM, Lopes FAC, Amorim ET, Bones FLV, Anjos DA, Carvalho-Silva M, Convey P, Rosa LH. DNA metabarcoding reveal hidden diversity of periphytic eukaryotes on marine Antarctic macroalgae. AN ACAD BRAS CIENC 2025; 96:e20240570. [PMID: 39813480 DOI: 10.1590/0001-3765202420240570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/01/2024] [Indexed: 01/18/2025] Open
Abstract
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The "phycosphere" refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae. The ITS2 region was used as a barcode and our analysis yielded 77 eukaryotic ASVs spanning five Kingdoms (Fungi, Metazoa, Chromista, Protozoa, and Viridiplantae) and ten phyla (Ascomycota, Basidiomycota, Cercozoa, Ciliophora, Ochrophyta, Amebozoa, Chlorophyta, Rhodophyta, Bryophyta and Cnidaria). Additionally, we identified 14 potential new occurrence records for Antarctica. Ciliates and green algae were the most species-rich groups. The most abundant assigned associated species was Monostroma angicava (Chrorophyta). Within the macroalgal, the Chlorophyceans Ulothrix sp. hosted the greatest number of taxa, followed by Monostroma hariotii. Our data suggested that Antarctic macroalgae host a rich diversity of associated organisms and the biodiversity associated with the phycosphere remains underestimated.
Collapse
Affiliation(s)
- Paulo Eduardo A S Câmara
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
- Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Franciane Maria Pellizzari
- Universidade Estadual do Paraná (UNESPAR), Departamento de Ciências Biológicas, Programa de Pós-graduação em Ecossistemas Litorâneos e Insulares, Rua Comendador Correia Júnior, 11783203-560 Paranaguá, PR, Brazil
| | - Fabyano A C Lopes
- Universidade Federal do Tocantins, Laboratório de Microbiologia, Rua 03, Lote 11,/n, 77500-000 Porto Nacional, TO, Brazil
- Universidade Federal do Tocantins, Núcleo de Estudos Ambientais, Rua 03, Lote 11, s/n, 77500-000 Porto Nacional, TO, Brazil
| | - Eduardo T Amorim
- Jardim Botânico do Rio de Janeiro (JBRJ), Centro Nacional de Conservação da Flora (CNCFLORA), Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Fábio L V Bones
- Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Dafne A Anjos
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
- Universidade do Estado do Rio de Janeiro, UERJ, Instituto de Biologia Roberto Alcantara Gomes, Rua São Francisco Xavier 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Micheline Carvalho-Silva
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
- University of Johannesburg, Department of Zoology, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Luiz Henrique Rosa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Woodcock MR, Powers K, Snead K, Pellettieri J. Flatworm Transcriptomes Reveal Widespread Parasitism by Histophagous Ciliates. Genome Biol Evol 2024; 16:evae007. [PMID: 38242711 PMCID: PMC10837001 DOI: 10.1093/gbe/evae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These "histophages" feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A co-phylogenetic reconstruction provides strong evidence for the coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.
Collapse
Affiliation(s)
- M Ryan Woodcock
- Department of Biology, Keene State College, Keene, NH, USA
- Department of Science, Mathematics and Technology, Medaille University, Buffalo, NY, USA
- Department of Natural Science, Trocaire College, Buffalo, NY, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kirsten Snead
- Department of Science, Mathematics and Technology, Medaille University, Buffalo, NY, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
5
|
Woodcock MR, Powers K, Snead K, Pellettieri J. FLATWORM TRANSCRIPTOMES REVEAL WIDESPREAD PARASITISM BY HISTOPHAGOUS CILIATES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558123. [PMID: 37745455 PMCID: PMC10516030 DOI: 10.1101/2023.09.17.558123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These 'histophages' feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A cophylogenetic reconstruction provides strong evidence for coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.
Collapse
Affiliation(s)
- M. Ryan Woodcock
- Department of Biology, Keene State College, Keene, NH, USA
- Department of Science, Mathematics & Technology, Medaille University, Buffalo, NY, USA
- Department of Natural Science, Trocaire College, Buffalo, NY, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kirsten Snead
- Department of Science, Mathematics & Technology, Medaille University, Buffalo, NY, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
6
|
Obert T, Zhang T, Rurik I, Vďačný P. First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora). Front Microbiol 2022; 13:1067315. [PMID: 36569075 PMCID: PMC9772525 DOI: 10.3389/fmicb.2022.1067315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.
Collapse
Affiliation(s)
| | | | | | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
7
|
Hao T, Song Y, Li B, Pan X. Morphology and molecular phylogeny of three freshwater scuticociliates, with establishments of one new genus and three new species (Ciliophora, Oligohymenophorea). Eur J Protistol 2022; 86:125918. [DOI: 10.1016/j.ejop.2022.125918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
|
8
|
Rataj M, Zhang T, Vd’ačný P. Nuclear and Mitochondrial SSU rRNA Genes Reveal Hidden Diversity of Haptophrya Endosymbionts in Freshwater Planarians and Challenge Their Traditional Classification in Astomatia. Front Microbiol 2022; 13:830951. [PMID: 35495648 PMCID: PMC9048206 DOI: 10.3389/fmicb.2022.830951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Like many other aquatic animals, freshwater planarians have also become partners of symbiotic ciliates from the class Oligohymenophorea. In the present study, we explored the hidden diversity and addressed the questionable systematic position of mouthless obligatory gut endosymbionts of freshwater planarians, using the nuclear and mitochondrial SSU rRNA genes. Although all isolated ciliates morphologically corresponded to a single species, molecular analyses suggested the existence of three genetically distinct entities: Haptophrya planariarum, Haptophrya dugesiarum nov. spec., and Haptophrya schmidtearum nov. spec. The two former species share the same planarian host, which indicates a speciation model involving one duplication event without host switching. Such a diversification pattern was recognized also in astome ciliates inhabiting megascolecid and glossoscolecid earthworms. The present multi-gene phylogenies along with the secondary structure of the mitochondrial 16S rRNA molecule, however, challenge the traditional classification of Haptophrya within the subclass Astomatia. Haptophrya very likely evolved from an orphan scuticociliate lineage by the loss of oral apparatus and by the transformation of the thigmotactic field into an adhesive sucker. Since astomy evolved multiple times independently within the Oligohymenophorea, the loss of cell mouth cannot be used as a sole argument for the assignment of Haptophrya to the Astomatia anymore.
Collapse
Affiliation(s)
| | | | - Peter Vd’ačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
9
|
Rataj M, Vďačný P. Putative ITS2 secondary structure model and multi‐gene phylogenies of tetrahymenids (Ciliophora, Hymenostomatia) parasitizing planarians and crayfish worms. ZOOL SCR 2022. [DOI: 10.1111/zsc.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Matej Rataj
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Peter Vďačný
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
10
|
Multiple independent losses of cell mouth in phylogenetically distant endosymbiotic lineages of oligohymenophorean ciliates: A lesson from Clausilocola. Mol Phylogenet Evol 2021; 166:107310. [PMID: 34506949 DOI: 10.1016/j.ympev.2021.107310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/27/2023]
Abstract
The cell mouth is a property of the vast majority of free-living and endosymbiotic/epibiotic ciliates of the class Oligohymenophorea. Cytostome, however, naturally absents in the whole endosymbiotic subclass Astomatia and was naturally or experimentally lost in a few members of the subclass Hymenostomatia. This poses a question of how homoplastic might be the lack of oral structures in the oligohymenophorean evolution. To address this question, we used two mitochondrial genes, five nuclear markers, and detailed morphological data from an enigmatic mouthless ciliate, Clausilocola apostropha, which we re-discovered after more than half of a century. According to the present phylogenetic analyses, astomy evolved at least three times independently and in different time frames of the oligohymenophorean phylogeny, ranging from the Paleozoic to the Cenozoic period. Mouthless endosymbionts inhabiting mollusks (represented by Clausilocola), planarians (Haptophrya), and annelids ('core' astomes) never clustered together. Haptophrya grouped with the scuticociliate genus Conchophthirus, 'core' astomes were placed in a sister position to the scuticociliate orders Philasterida and Pleuronematida, and Clausilocola was robustly nested within the hymenostome family Tetrahymenidae. The tetrahymenid origin of Clausilocola is further corroborated by the existence of mouthless Tetrahymena mutants and the huge phenotypic plasticity in the cytostome size in tetrahymenids.
Collapse
|
11
|
da Silva Costa F, Júnio Pedroso Dias R, Fonseca Rossi M. Macroevolutionary analyses of ciliates associated with hosts support high diversification rates. Int J Parasitol 2021; 51:967-976. [PMID: 33991568 DOI: 10.1016/j.ijpara.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Ciliophora is a phylum that is comprised of extremely diverse microorganisms with regard to their morphology and ecology. They may be found in various environments, as free-living organisms or associated with metazoans. Such associations range from relationships with low metabolic dependence such as epibiosis, to more intimate relationships such as mutualism and parasitism. We know that symbiotic relationships occur along the whole phylogeny of the group, however, little is known about their evolution. Theoretical studies show that there are two routes for the development of parasitism, yet few authors have investigated the evolution of these characteristics using molecular tools. In the present study, we inferred a wide dated molecular phylogeny, based on the 18S rDNA gene, for the entire Ciliophora phylum, mapped life habits throughout the evolutionary time, and evaluated whether symbiotic relationships were linked to the variation in diversification rates and to the mode of evolution of ciliates. Our results showed that the last common ancestor for Ciliophora was likely a free-living organism, and that parasitism is a recent adaptation in ciliates, emerging more than once and independently via two distinct routes: (i) a free-living ciliate evolved into a mutualistic organism and, later, into a parasitic organism, and (ii) a free-living ciliate evolved directly into a parasitic organism. Furthermore, we have found a significant increase in the diversification rate of parasitic and mutualistic ciliates compared with their free-living conspecifics. The evolutionary success in different lineages of symbiont ciliates may be associated with many factors including type and colonization placement on their host, as well as physical and physiological conditions made available by the hosts.
Collapse
Affiliation(s)
- Fabiola da Silva Costa
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Roberto Júnio Pedroso Dias
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Fonseca Rossi
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Rataj M, Vd'ačný P. Cryptic host-driven speciation of mobilid ciliates epibiotic on freshwater planarians. Mol Phylogenet Evol 2021; 161:107174. [PMID: 33831547 DOI: 10.1016/j.ympev.2021.107174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023]
Abstract
Mobilids are among the most taxonomically diverse but morphologically uniform groups of epibiotic ciliates. They attach to their hosts by means of an adhesive disc as harmless commensals such as Urceolaria, or as parasites causing significant economic loss such as some Trichodina species. We investigated the diversity, species boundaries, and phylogenetic relationships of mobilids associated with freshwater planarians, using 114 new sequences of two mitochondrial (16S rRNA gene and cytochrome c oxidase gene) and five nuclear (18S rRNA gene, ITS1-5.8S-ITS2 region, D1/D2 domains of 28S rRNA gene) markers. Although the morphological disparity of the isolated trichodinids and urceolariids was low, Bayesian coalescent analyses revealed the existence of five distinct evolutionary lineages/species given the seven molecular markers. The occurrence of mobilids perfectly correlated with their planarian hosts: Trichodina steinii and two Urceolaria mitra-like taxa were associated exclusively with the planarian Dugesia gonocephala, Trichodina polycelis sp. n. with the planarian Polycelis felina, and Trichodina schmidtea sp. n. with the planarian Schmidtea polychroa. Host organisms thus very likely constitute sharply isolated niches that might permit speciation of their epibiotic ciliates, even though no distinct morphological features appear to be recognizable among ciliates originating from different hosts.
Collapse
Affiliation(s)
- Matej Rataj
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
| | - Peter Vd'ačný
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
13
|
Multi-gene phylogeny of the subclass Astomatia (Protista: Ciliophora) refreshed with two rare astome ciliates from the digestive tube of endogeic earthworms. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-020-00469-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Obert T, Rurik I, Vd’ačný P. Diversity and Eco-Evolutionary Associations of Endosymbiotic Astome Ciliates With Their Lumbricid Earthworm Hosts. Front Microbiol 2021; 12:689987. [PMID: 34220782 PMCID: PMC8250849 DOI: 10.3389/fmicb.2021.689987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Coevolution of endosymbionts with their hosts plays an important role in the processes of speciation and is among the most fascinating topics in evolutionary biology. Astome ciliates represent an interesting model for coevolutionary studies because they are so tightly associated with their host organisms that they completely lost the cell oral apparatus. In the present study, we used five nuclear markers (18S rRNA gene, ITS1-5.8S-ITS2 region, and 28S rRNA gene) and two mitochondrial genes (16S rRNA gene and cytochrome c oxidase subunit I) to explore the diversity of astomes inhabiting the digestive tract of lumbricid earthworms at temperate latitudes in Central Europe and to cast more light on their host specificity and coevolution events that shaped their diversification. The present coevolutionary and phylogenetic interaction-adjusted similarity analyses suggested that almost every host switch leads to speciation and firm association with the new host. Nevertheless, the suggested high structural host specificity of astomes needs to be tested with increased earthworm sampling, as only 52 out of 735 lumbricid earthworms (7.07%) were inhabited by ciliates. On the other hand, the diversification of astomes associated with megascolecid and glossoscolecid earthworms might have been driven by duplication events without host switching.
Collapse
|
15
|
Zhang T, Vďačný P. Re-discovery and novel contributions to morphology and multigene phylogeny of Myxophyllum steenstrupi (Ciliophora: Pleuronematida), an obligate symbiont of terrestrial pulmonates. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Myxophyllum steenstrupi is a symbiotic ciliate living in the body slime and mantle cavity of terrestrial pulmonates (Gastropoda: Pulmonata). In the present study, M. steenstrupi was re-discovered after almost 30 years and characterized using an integrative morpho-molecular approach for the first time. Myxophyllum is distinguished by a broadly ovate, about 140 × 115 μm-sized body, a nuclear apparatus typically composed of seven macronuclear nodules and a single micronucleus, a central contractile vacuole, a shallow oral cavity situated in the posterior body region and dense somatic ciliature with extensive thigmotactic field. According to the present phylogenetic analyses of two mitochondrial and five nuclear markers, M. steenstrupi is classified in the predominantly free-living order Pleuronematida (Oligohymenophorea: Scuticociliatia). This order also encompasses other taxa isolated from molluscs and traditionally classified along with Myxophyllum in the order Thigmotrichida. The proper classifications of Myxophyllum was hampered by the dramatic remodelling of its oral apparatus (reduction of the paroral membrane and adoral organelles, formation of vestibular kineties), a transformation that was likely induced by its firm association with terrestrial gastropods. The present study also documents that various ciliate lineages independently became commensals or parasites of various aquatic and terrestrial molluscs.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
16
|
Obert T, Vďačný P. Delimitation of five astome ciliate species isolated from the digestive tube of three ecologically different groups of lumbricid earthworms, using the internal transcribed spacer region and the hypervariable D1/D2 region of the 28S rRNA gene. BMC Evol Biol 2020; 20:37. [PMID: 32171235 PMCID: PMC7071660 DOI: 10.1186/s12862-020-1601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background Various ecological groups of earthworms very likely constitute sharply isolated niches that might permit speciation of their symbiotic ciliates, even though no distinct morphological features appear to be recognizable among ciliates originating from different host groups. The nuclear highly variable ITS1–5.8S-ITS2 region and the hypervariable D1/D2 region of the 28S rRNA gene have proven to be useful tools for the delimitation of species boundaries in closely related free-living ciliate taxa. In the present study, the power of these molecular markers as well as of the secondary structure of the ITS2 molecule were tested for the first time in order to discriminate the species of endosymbiotic ciliates that were isolated from the gastrointestinal tract of three ecologically different groups of lumbricid earthworms. Results Nineteen new ITS1–5.8S-ITS2 region and D1/D2-28S rRNA gene sequences were obtained from five astome species (Anoplophrya lumbrici, A. vulgaris, Metaradiophrya lumbrici, M. varians, and Subanoplophrya nodulata comb. n.), which were living in the digestive tube of three ecological groups of earthworms. Phylogenetic analyses of the rRNA locus and secondary structure analyses of the ITS2 molecule robustly resolved their phylogenetic relationships and supported the distinctness of all five species, although previous multivariate morphometric analyses were not able to separate congeners in the genera Anoplophrya and Metaradiophrya. The occurrence of all five taxa, as delimited by molecular analyses, was perfectly correlated with the ecological groups of their host earthworms. Conclusions The present study indicates that morphology-based taxonomy of astome ciliates needs to be tested in the light of molecular and ecological data as well. The use of morphological identification alone is likely to miss species that are well delimited based on molecular markers and ecological traits and can lead to the underestimation of diversity and overestimation of host range. An integrative approach along with distinctly increased taxon sampling would be helpful to assess the consistency of the eco-evolutionary trend in astome ciliates.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic.
| |
Collapse
|
17
|
Multi-gene phylogeny of Tetrahymena refreshed with three new histophagous species invading freshwater planarians. Parasitol Res 2020; 119:1523-1545. [PMID: 32152714 DOI: 10.1007/s00436-020-06628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
Planarians represent an insufficiently explored group of aquatic invertebrates that might serve as hosts of histophagous ciliates belonging to the hymenostome genus Tetrahymena. During our extensive research on freshwater planarians, parasitic tetrahymenas were detected in two of the eight planarian species investigated, namely, in Dugesia gonocephala and Girardia tigrina. Using the 16S and 18S rRNA genes as well as the barcoding cytochrome oxidase subunit I, one ciliate species was identified as T. scolopax and three species were recognized as new forms: T. acanthophora, T. dugesiae, and T. nigricans. Thus, 25% of the examined planarian taxa are positive for Tetrahymena species and three of them represent new taxa, indicating a large undescribed ciliate diversity in freshwater planarians. According to phylogenetic analyses, histophagous tetrahymenas show a low phylogenetic host specificity. Although T. acanthophora, T. dugesiae, and T. scolopax clustered together within the "borealis" clade, the former species has been detected exclusively in G. tigrina, while the two latter species only in D. gonocephala. Tetrahymena nigricans, which has been isolated only from G. tigrina, was classified within the "paravorax" clade along with T. glochidiophila which feeds on glochidia. The present phylogenetic reconstruction of ancestral life strategies suggested that the last common ancestor of the family Tetrahymenidae was free-living, unlike the progenitor of the subclass Hymenostomatia which was very likely parasitic. Consequently, there were at least seven independent shifts back to parasitism/histophagy within Tetrahymena: one each in the "paravorax" and "australis" clades and at least five transfers back to parasitism in the "borealis" clade.
Collapse
|
18
|
Obert T, Vďačný P. Evolutionary Origin and Host Range of Plagiotoma lumbrici (Ciliophora, Hypotrichia), an Obligate Gut Symbiont of Lumbricid Earthworms. J Eukaryot Microbiol 2019; 67:176-189. [PMID: 31603571 DOI: 10.1111/jeu.12768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
Four common earthworm species, the anecic Lumbricus terrestris, the endogeic Octolasion tyrteum as well as the epigeic Eisenia fetida and Dendrobaena veneta, were examined for the presence of the microbial gut symbiont Plagiotoma lumbrici. The evolutionary origin of this endobiotic microbe was reconstructed, using the 18S rRNA gene, the ITS1-5.8S-ITS2 region, and the first two domains of the 28S rRNA gene. Plagiotoma lumbrici was exclusively detected in the anecic Lumbricus terrestris. Multigene analyses and the ITS2 secondary structure robustly determined the phylogenetic home of Plagiotoma lumbrici populations within the oxytrichid Dorsomarginalia (Spirotrichea: Hypotrichia) as a sister taxon of the free-living Hemiurosomoida longa. This indicates that earthworms obtained their gut endosymbiont by ingesting soil/leaf litter containing oxytrichine ciliates that became adapted to the intestinal tract of earthworms. Interestingly, according to the literature data, Plagiotoma lumbrici was detected in multiple anecic and some epigeic but never in endogeic earthworms. These observations suggest that Plagiotoma lumbrici might be adapted to certain gut conditions and the lifestyle of anecic Lumbricidae, such as Lumbricus, Aporrectodea, and Scherotheca, as well as of some co-occurring epigeic Lumbricus species.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|