1
|
Causes of peroneal neuropathy associated with orthopaedic leg lengthening in different canine models. Strategies Trauma Limb Reconstr 2018; 13:95-102. [PMID: 29802558 PMCID: PMC6042218 DOI: 10.1007/s11751-018-0313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
Peroneal neuropathy is one of the complications of orthopaedic leg lengthening. Methods of treatment include slowing of distraction and decompression both of which may lead to additional complications. The purpose of this study was to analyse the changes in histologic peroneal nerve structure during experimental orthopaedic lengthening using various modes of manual or automatic distraction. The obtained data provide the basis for better understanding of peroneal neuropathy pathogenesis and refinement of prophylaxis and preventive treatment protocols. Four experimental models of canine leg lengthening using the Ilizarov fixator were studied: 1 (n = 10)—manual distraction—1 mm/day divided into four increments; 2 (n = 12)—automatic distraction—1 mm/day in 60 increments, 3 (n = 9) and 4 (n = 9)—increased rate of high frequency automatic distraction: 3 mm/day in 120 and 180 increments, respectively. In peroneal nerves semi-thin sections cross-sectional fascicular areas, content of adipocytes in epineurium, endoneurial vascularisation, morphometric parameters of nerve fibres were assessed by computerised analysis at the end of distraction and of consolidation periods and 30 days after fixator removal. In Groups 1–2 massive nerve fibre degeneration along with epineural vessels obliteration was revealed in two cases from 22, whereas in Groups 3–4 there were 10 from 18 (p < 0.01). Injuries of perineurium and endoneurial vessels were noted in Group 3, and long-lasting thinning of nerve fascicles in Group 4. The decrease in epineurial fat tissue was revealed in all groups, more drastic in 3. Modifications and injuries of nerve sheaths and blood vessels depending on distraction rate and frequency contribute to peroneal neuropathy. Its mechanical, circulatory and metabolic causes are discussed.
Collapse
|
2
|
Király K, Kozsurek M, Lukácsi E, Barta B, Alpár A, Balázsa T, Fekete C, Szabon J, Helyes Z, Bölcskei K, Tékus V, Tóth ZE, Pap K, Gerber G, Puskár Z. Glial cell type-specific changes in spinal dipeptidyl peptidase 4 expression and effects of its inhibitors in inflammatory and neuropatic pain. Sci Rep 2018; 8:3490. [PMID: 29472575 PMCID: PMC5823904 DOI: 10.1038/s41598-018-21799-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. In naïve animals, microglia and astrocytes expressed DPP4 protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and interact with endogenous opioid systems.
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089, Budapest, Hungary
| | - Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benjamin Barta
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Tamás Balázsa
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Csaba Fekete
- "Lendület" Laboratory of Integrative Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Judit Szabon
- "Lendület" Laboratory of Integrative Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary
| | - Zsuzsanna E Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Károly Pap
- Department of Traumatology, Semmelweis University, H-1113 Budapest, Hungary & Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145, Budapest, Hungary
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
3
|
Simões ALB, Silva GAR, Giorgetto C, de Cassia do Carmo-Campos E, Dias FJ, Fazan VPS. Substance P in Dorsal Root Ganglion Neurons in Young and Adult Rats, after Nociceptive Stimulation during the Neonatal Period. Anat Rec (Hoboken) 2018; 301:849-861. [PMID: 29244245 DOI: 10.1002/ar.23755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/25/2017] [Accepted: 09/17/2017] [Indexed: 12/21/2022]
Abstract
The nervous system is highly plastic during the neonatal period, being sensitive to noxious stimuli, which may cause short- and long-term pain responsivity changes. Understanding plasticity in peripheral pain pathways is crucial, particularly when the nervous system is still under development and remodeling process. Substance P (SP) is widely used as a marker for peripheral neurons with unmyelinated and small myelinated fibers. We investigated the number of SP immunoreactive neurons in the dorsal root ganglion (DRG) of male and female Wistar rats, 15 and 180 days after nociceptive stimulation during the neonatal period. Right and left 5th lumbar (L5) DRG were incubated in rabbit polyclonal anti-substance P primary followed by biotinylated donkey anti-rabbit secondary antibodies. Reaction was revealed with a nickel-diaminobenzidine solution. Labeled neurons were counted and compared between ages, genders and groups. Gender differences were present in both ages, with the number of SP-positive DRG neurons being larger in 15-days-old males on both sides. After 180 days, males showed a larger number of SP-positive neurons than females only on the nociceptive stimulated side. An increased number of SP-positive neurons in the DRG on the stimulated side was present in females, immediately after nociceptive stimulation, but not after 180 days. In conclusion, neonatal noxious stimulation caused a permanent increase in SP-positive DRG neurons in males that was not observed in females, suggesting that differences in pain processing/responsivity between genders could be related to morphological alterations of the nervous system. Anat Rec, 301:849-861, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Leda Bertoncini Simões
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Greice Anne Rodrigues Silva
- Department of Neurosciences and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Carolina Giorgetto
- Department of Neurosciences and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Elisabete de Cassia do Carmo-Campos
- Department of Neurosciences and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Fernando José Dias
- Department of Integral Dentistry, CICO - Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.,Department of Neurosciences and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|