1
|
Kipiani EE, Burjanadze MA, Dashniani MG, Chkhikvishvili NC, Naneishvili TL, Chighladze MR, Nozadze BG, Beselia GV. Medial septum deep brain stimulation enhances memory and hippocampal neurogenesis in the D-galactose induced rat model of aging: behavioral and immunohistochemical study. Exp Brain Res 2025; 243:95. [PMID: 40100345 DOI: 10.1007/s00221-025-07051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
One of the cardinal features of aging is brain aging, which manifests itself in impaired cognitive functions. Experimental data suggest that deep brain stimulation (DBS) can improve memory functions when stimulating specific brain regions. In present study we tested the hypothesis that medial septum (MS) DBS enhances memory function by modulating the hippocampal neurogenesis in the D-galactose (D-gal) induced rat model of aging. Rats were randomly assigned to four experimental groups: (1) control, (2) administration of D-gal, (3) administration of D-gal and electrode implantation and (4) administration of D-gal, electrode implantation and stimulation. Our results showed that MS DBS significantly enhanced the memory functions in an animal model of aging induced by D-gal administration, which impaired long-term spatial memory in the Morris water maze and impaired spatial and object novelty recognition memory in the open field. The immunohistochemical studies showed that in the Dentate Gyrus (DG) of rats with D-gal administration or D-gal combined with electrode implantation, the number of NeuN (neuronal nuclear antigen) or Doublecortin-immunopositive cells decreased (Doublecortin - a biomarker for the post-mitotic phase of cells); MS stimulation increases the number of these cells in the DG to levels comparable to the control group. Thus, MS-DBS restores the level of hippocampal neurogenesis. The present data demonstrate for the first time that chronic DBS of the MS restores memory functions in a D-gal-induced animal model of aging, and that one of the important underlying mechanisms is mediated by enhanced neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Ekaterine E Kipiani
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
- Teaching University Geomedi LLC, King Solomon II str,4, Tbilisi, 0114, Georgia
| | - Maia A Burjanadze
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Manana G Dashniani
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Nino C Chkhikvishvili
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Temur L Naneishvili
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Mariam R Chighladze
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Barbare G Nozadze
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Gela V Beselia
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia.
- Department of Physiology and Pharmacology, Petre Shotadze Tbilisi Medical Academy, Ketevan Dedofali Ave51/2, Tbilisi, 0144, Georgia.
| |
Collapse
|
2
|
Ros-Bernal F, Gil-Miravet I, Lucerón J, Navarro-Sánchez M, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Postnatal development of the relaxin-3 innervation of the rat medial septum. Front Neurosci 2023; 17:1176587. [PMID: 37234259 PMCID: PMC10206071 DOI: 10.3389/fnins.2023.1176587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The septal area provides a rich innervation to the hippocampus regulating hippocampal excitability to different behavioral states and modulating theta rhythmogenesis. However, little is known about the neurodevelopmental consequences of its alterations during postnatal development. The activity of the septohippocampal system is driven and/or modulated by ascending inputs, including those arising from the nucleus incertus (NI), many of which contain the neuropeptide, relaxin-3 (RLN3). Methods We examined at the molecular and cellular level the ontogeny of RLN3 innervation of the septal area in postnatal rat brains. Results Up until P13-15 there were only scattered fibers in the septal area, but a dense plexus had appeared by P17 that was extended and consolidated throughout the septal complex by P20. There was a decrease in the level of colocalization of RLN3 and synaptophysin between P15 and P20 that was reversed between P20 and adulthood. Biotinylated 3-kD dextran amine injections into the septum, revealed retrograde labeling present in the brainstem at P10-P13, but a decrease in anterograde fibers in the NI between P10-20. Simultaneously, a differentiation process began during P10-17, resulting in fewer NI neurons double-labeled for serotonin and RLN3. Discussion The onset of the RLN3 innervation of the septum complex between P17-20 is correlated with the onset of hippocampal theta rhythm and several learning processes associated with hippocampal function. Together, these data highlight the relevance and need for further analysis of this stage for normal and pathological septohippocampal development.
Collapse
Affiliation(s)
- Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Jorge Lucerón
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM), Madrid, Spain
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Francisco E. Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultad de Ciencias de la Slud, Universitat Jaume I, Castellón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM), Madrid, Spain
| |
Collapse
|
3
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Okada K, Hashimoto K, Kobayashi K. Cholinergic regulation of object recognition memory. Front Behav Neurosci 2022; 16:996089. [PMID: 36248033 PMCID: PMC9557046 DOI: 10.3389/fnbeh.2022.996089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Object recognition memory refers to a basic memory mechanism to identify and recall various features of objects. This memory has been investigated by numerous studies in human, primates and rodents to elucidate the neuropsychological underpinnings in mammalian memory, as well as provide the diagnosis of dementia in some neurological diseases, such as Alzheimer's disease and Parkinson's disease. Since Alzheimer's disease at the early stage is reported to be accompanied with cholinergic cell loss and impairment in recognition memory, the central cholinergic system has been studied to investigate the neural mechanism underlying recognition memory. Previous studies have suggested an important role of cholinergic neurons in the acquisition of some variants of object recognition memory in rodents. Cholinergic neurons in the medial septum and ventral diagonal band of Broca that project mainly to the hippocampus and parahippocampal area are related to recognition memory for object location. Cholinergic projections from the nucleus basalis magnocellularis innervating the entire cortex are associated with recognition memory for object identification. Especially, the brain regions that receive cholinergic projections, such as the perirhinal cortex and prefrontal cortex, are involved in recognition memory for object-in-place memory and object recency. In addition, experimental studies using rodent models for Alzheimer's disease have reported that neurodegeneration within the central cholinergic system causes a deficit in object recognition memory. Elucidating how various types of object recognition memory are regulated by distinct cholinergic cell groups is necessary to clarify the neuronal mechanism for recognition memory and the development of therapeutic treatments for dementia.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
5
|
Zhvania MG, Pochkhidze N, Dashniani M, Tizabi Y, Japaridze N, Burjanadze M, Chilachava L. Short- and long-term effects of chronic toluene exposure on recognition memory in adolescent and adult male Wistar rats. Brain Res Bull 2022; 190:116-121. [PMID: 36156293 DOI: 10.1016/j.brainresbull.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Abuse of toluene-containing volatile inhalants, particularly among youth, is of significant medical and social concern worldwide. Teenagers constitute the most abundant users of toluene and the majority of adult abusers of toluene started as teenagers. Although the euphoric and neurotoxic effects of acute toluene have been widely studied, lasting effects of chronic toluene exposure, especially in various age groups, have not been well investigated. In this study, we used adolescent and adult male Wistar rats to evaluate the short- and long-term effects of chronic toluene on various behaviors including cognitive function. Daily exposure to toluene (2000 ppm) for 40 days (5min/day) resulted in age-dependent behavioral impairments. Specifically, adolescent animals showed recognition memory impairment the day after the last exposure, which had normalized by day 90 post- exposure, whereas such impairment in adult animals was still evident at day 90 post-exposure. Our data suggest that age-dependent responses should be taken into consideration in interventional attempts to overcome specific detrimental consequences of chronic toluene exposure.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia.
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Manana Dashniani
- Department of Behavior and Cognitive Functions, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia; Medical School, New Vision University, 1A Evgeni Mikeladze Street, 0159 Tbilisi, Georgia
| | - Maia Burjanadze
- Department of Behavior and Cognitive Functions, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 0160 Tbilisi, Georgia
| | - Lela Chilachava
- School of Natural Sciences and Medicine, Ilia State University. 3/5 K. Cholokashvili Avenue,0162 Tbilisi, Georgia
| |
Collapse
|
6
|
Burjanadze MA, Dashniani MG, Solomonia RO, Beselia GV, Tsverava L, Lagani V, Chkhikvishvili NC, Naneishvili TL, Kruashvili LB, Chighladze MR. Age-related changes in medial septal cholinergic and GABAergic projection neurons and hippocampal neurotransmitter receptors: relationship with memory impairment. Exp Brain Res 2022; 240:1589-1604. [PMID: 35357523 DOI: 10.1007/s00221-022-06354-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
The hippocampus, which provides cognitive functions, has been shown to become highly vulnerable during aging. One important modulator of the hippocampal neural network is the medial septum (MS). The present study attempts to determine how age-related mnemonic dysfunction is associated with neurochemical changes in the septohippocampal (SH) system, using behavioral and immunochemical experiments performed on young-adult, middle-aged and aged rats. According to these behavioral results, the aged and around 52.8% of middle-aged rats (within the "middle-aged-impaired" sub-group) showed both impaired spatial reference memory in the Morris water maze and habituation in the open field. Immunohistochemical studies revealed a significant decrease in the number of MS choline acetyltransferase immunoreactive cells in the aged and all middle-aged rats, in comparison to the young; however the number of gamma-aminobutyric acid-ergic (GABAergic) parvalbumin immunoreactive cells was higher in middle-aged-impaired and older rats compared to young and middle-aged-unimpaired rats. Western Blot analysis moreover showed a decrease in the level of expression of cholinergic, GABAergic and glutamatergic receptors in the hippocampus of middle-aged-impaired and aged rats in contrast to middle-aged-unimpaired and young rats. The present results demonstrate for the first time that a decrease in the expression level of hippocampal receptors in naturally aged rats with impaired cognitive abilities occurs in parallel with an increase in the number of GABAergic neurons in the MS, and it highlights the particular importance of inhibitory signaling in the SH network for memory function.
Collapse
Affiliation(s)
- Maia A Burjanadze
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.
| | - Manana G Dashniani
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Revaz O Solomonia
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.,Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Gela V Beselia
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.,Department of Physiology and Pharmacology, Petre Shotadze Tbilisi Medical Academy, 0144, Tbilisi, Georgia
| | - Lia Tsverava
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.,Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Nino C Chkhikvishvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Temur L Naneishvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Lali B Kruashvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Mariam R Chighladze
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| |
Collapse
|
7
|
Dashniani MG, Burjanadze MA, Chkhikvishvili NC, Solomonia RO, Kandashvili M, Naneishvili TL, Beselia GV, Kruashvili LB, Chighladze MR. Modulation of spatial memory and expression of hippocampal neurotransmitter receptors by selective lesion of medial septal cholinergic and GABAergic neurons. Exp Brain Res 2020; 238:2385-2397. [PMID: 32770352 DOI: 10.1007/s00221-020-05889-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022]
Abstract
The medial septum (MS) is an important modulator of hippocampal function. The degree of damage in which the particular set of septo-hippocampal projections contributes to the deficits of spatial memory with concomitant changes of hippocampal receptors expression has not been studied till present. Therefore, we investigated spatial memory and the expression level of cholinergic (α7 nACh and M1), GABAergic (α1 subunit of GABAA) and glutamatergic (NR2B subunit of NMDA and GluR 1 subunit of AMPA) receptors in the hippocampus following selective lesions of cholinergic and GABAergic septo-hippocampal projection. Learning process and long-term spatial memory were assessed using a Morris water maze. The obtained results revealed that in contrast to cholinergic lesions, rats with MS GABAergic lesions exhibit a retention deficit in 3 days after training. Western blot analyses revealed the MS cholinergic lesions have significant effect on the expression level of the M1 mACh receptors, while MS GABAergic lesions induce dramatic modulations of hippocampal glutamatergic, cholinergic and GABAergic receptors expression. These results for the first time demonstrated that selective lesions of MS cholinergic and GABAergic neurons differentially affect long-term spatial memory and the memory deficit after MS GABAergic lesion is paralleled with significant changes of hippocampal glutamate, GABA and acetylcholine receptors expression.
Collapse
Affiliation(s)
- Manana G Dashniani
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.
| | - Maia A Burjanadze
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Nino C Chkhikvishvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Revaz O Solomonia
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
- Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Manana Kandashvili
- Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Temur L Naneishvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Gela V Beselia
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
- Department of Physiology and Pharmacology, Petre Shotadze Tbilisi Medical Academy, 0144, Tbilisi, Georgia
| | - Lali B Kruashvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Mariam R Chighladze
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| |
Collapse
|