Mitochondrial proteomics alterations in rat hearts following ischemia/reperfusion and diazoxide post‑conditioning.
Mol Med Rep 2020;
23:161. [PMID:
33355377 PMCID:
PMC7789131 DOI:
10.3892/mmr.2020.11800]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Diazoxide post-conditioning (D-Post) has been shown to be effective in alleviating myocardial ischemia/reperfusion (I/R) injury; however, the specific mechanisms are not fully understood. In the present study, isolated rat hearts were subjected to I/R injury and D-Post. The mitochondria were extracted, and mitochondrial protein expression was detected in normal, I/R and D-Post hearts using two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Differentially expressed proteins were then identified using comparative proteomics. In total, five differentially expressed proteins were identified between the I/R and D-Post hearts. Compared with the I/R hearts, the expression of NADH dehydrogenase (ubiquinone) flavoprotein 1 (NDUFV1), NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1), 2-oxoglutarate dehydrogenase (OGDH) and ATP synthase α subunit (isoform CRA_b, gi|149029482) was increased in D-Post hearts. In addition, the expression of another isoform of ATP synthase α subunit (isoform CRA_c, gi|149029480) was decreased in the D-Post group compared with the I/R group. The expression profiles of NDUFV1, NDUFS1 and OGDH in the two groups were further validated via western blotting. The five differentially expressed proteins may be protective effectors in D-Post, as well as potential targets for the treatment of cardiac I/R injury.
Collapse