1
|
Kolesár DM, Kujal P, Mrázová I, Pokorný M, Škaroupková P, Vaňourková Z, Sadowski J, Červenka L, Netuka I. Sex-Linked Differences in Cardiac Atrophy After Heterotopic Heart Transplantation: No Direct Relation to the Actions of Sex Steroid Hormones. Physiol Res 2024; 73:S527-S539. [PMID: 39589301 PMCID: PMC11627268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/21/2024] [Indexed: 11/27/2024] Open
Abstract
An important complication of prolonged support of the left ventricle with an assist device when implanted in patients with heart failure is unloading-induced cardiac atrophy. Our recent study suggested that sex-linked differences in the development of atrophy induced by heterotopic heart transplantation (HTX) do exist, however, the role of the environmental conditions dependent on plasma concentrations of sex hormones remains elusive. We aimed to compare the course of HTX-induced cardiac atrophy in male and female rats after gonadectomy with substitution of steroid hormones of the opposite sex. In a separate series of experiments, we evaluated the course of unloading-induced cardiac atrophy in the female heart transplanted into a male recipient and vice versa. Cardiac atrophy was assessed as the ratio of the transplanted heart weight to native heart weight (HW), which was determined 14 days after HTX. In female rats, studied in both experimental variants, HTx resulted in significantly smaller decreases in whole HW when compared to those observed in male rats exposed to the same experimental conditions (-9 ± 1 and - 11 + 1 vs. -44 ± 2 and -42 ± 2 %, p?0.05 in both cases). The dynamic of changes in left and right ventricle was similar as in the whole HW. Our results show that the process of unloading-induced cardiac atrophy exhibits important sex-linked differences and that attenuation of this process in female rats cannot be simply ascribed to the protective effects of estradiol or to the absence of deleterious actions of testosterone. Keywords: Cardiac atrophy, Sex differences, Gonadectomy, Hormonal substitution, Heterotopic heart transplantation, Mechanical heart unloading.
Collapse
Affiliation(s)
- D M Kolesár
- Dept Cardiovasc Surgery, Inst Clin Exp Med, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Namoju R, Chilaka KN. Protective effect of alpha‑lipoic acid against in utero cytarabine exposure-induced hepatotoxicity in rat female neonates. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6577-6589. [PMID: 38459988 DOI: 10.1007/s00210-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Cytarabine, an anti-metabolite drug, remains the mainstay of treatment for hematological malignancies. It causes various toxic effects including teratogenicity. Alpha lipoic acid (ALA) is a natural antioxidant reported to offer protection against hepatotoxicity induced by various pathological conditions, drugs, or chemicals. We investigated the protective effect of ALA against prenatal cytarabine exposure-induced hepatotoxicity in rat female neonates. A total of 30 dams were randomly assigned to five groups and received normal saline, ALA 200 mg/kg, cytarabine 12.5 mg/kg, cytarabine 25 mg/kg, and cytarabine 25 mg/kg + ALA 200 mg/kg, respectively, from gestational day (GD)8 to GD21. Cytarabine and ALA were administered via intraperitoneal and oral (gavage) routes, respectively. On postnatal day (PND)1, all the live female neonates (pups) were collected and weighed. The blood and liver from pups were carefully collected and used for histopathological, and biochemical evaluations. A significant and dose-dependent decrease in maternal food intake and weight gain was observed in the pregnant rats (dams) of the cytarabine groups as compared to the dams of the control group. The pups exposed to cytarabine showed a significant and dose-dependent (a) decrease in body weight, liver weight, hepatosomatic index, catalase, superoxide dismutase, glutathione, glutathione peroxidase, serum albumin levels and (b) increase in malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, AST/ALT ratio, and histopathological anomalies. Maternal co-administration of ALA ameliorated these biochemical changes and histopathological abnormalities by combating oxidative stress. Future studies are warranted to explore the molecular mechanisms involved in the ALA's protective effects against prenatal cytarabine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ramanachary Namoju
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| | - Kavitha N Chilaka
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
3
|
Alaryani FS, Jaber FA, Almutiri BS, Abdu SB, Mohammed A, Al-Robiee AH. The protective effect of Curcuma longa on male infertility induced by thioacetamide. J Adv Vet Anim Res 2024; 11:762-771. [PMID: 39605775 PMCID: PMC11590601 DOI: 10.5455/javar.2024.k828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study aimed to investigate the impact of thioacetamide (TAA) on the structure and function of the testes and assess the therapeutic effects of Curcuma longa (Cl) against TAA-induced toxicity in rats. Materials and Methods Thirty-two male albino rats weighing 180-200 gm and aged 11-12 weeks were randomly separated into four groups. The control group was given normal saline, the Cl group was orally administered Cl (500 mg/kg/day), the TAA group received intraperitoneal TAA (200 mg/kg body weight, three times/week), and the Cl with TAA group received Cl orally two hours before TAA administration. After 8 weeks, all rats were anesthetized, and body and testis weights were recorded. Morphological and histological assessments as well as biochemical analyses were conducted. Results The study revealed a significant decrease in both body and testis weights in the TAA group, accompanied by a substantial increase in luteinizing hormone (LH), follicle-stimulating hormone (FSH), and malondialdehyde (MDA) levels. Testosterone (T) and glutathione (GSH) were significantly decreased in the TAA-treated group compared to the control. Conversely, the Cl-treated group exhibited a substantial decrease in LH, FSH, and MDA levels while showing a significant increase in T and GSH. Conclusion Cl has been found to have a potential therapeutic role in mitigating TAA-induced testicular damage by acting as an antioxidant. This is supported by a significant decrease in oxidative stress markers and supporting hormonal levels. Further research is needed to understand the underlying mechanisms and explore the clinical applicability of Cl in preventing and treating testicular toxicity.
Collapse
Affiliation(s)
- Fatima S. Alaryani
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A. Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Boudor S. Almutiri
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Suzan B. Abdu
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Asmaa H. Al-Robiee
- Biology Department, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Kolesár DM, Kujal P, Mrázová I, Pokorný M, Škaroupková P, Sadowski J, Červenka L, Netuka I. Sex-Linked Differences in Cardiac Atrophy After Mechanical Unloading Induced by Heterotopic Heart Transplantation. Physiol Res 2024; 73:9-25. [PMID: 38466001 PMCID: PMC11019613 DOI: 10.33549/physiolres.935217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 04/26/2024] Open
Abstract
No information is available about sex-related differences in unloading-induced cardiac atrophy. We aimed to compare the course of unloading-induced cardiac atrophy in intact (without gonadectomy) male and female rats, and in animals after gonadectomy, to obtain insight into the influence of sex hormones on this process. Heterotopic heart transplantation (HT((x)) was used as a model for heart unloading. Cardiac atrophy was assessed as the weight ratio of heterotopically transplanted heart weight (HW) to the native HW on days 7 and 14 after HTx in intact male and female rats. In separate experimental groups, gonadectomy was performed in male and female recipient animals 28 days before HT(x) and the course of cardiac atrophy was again evaluated on days 7 and 14 after HT(x). In intact male rats, HT(x) resulted in significantly greater decreases in whole HW when compared to intact female rats. The dynamics of the left ventricle (LV) and right ventricle (RV) atrophy after HT(x) was quite similar to that of whole hearts. Gonadectomy did not have any significant effect on the decreases in whole HW, LV, and RV weights, with similar results in male and female rats. Our results show that the development of unloading-induced cardiac atrophy is substantially reduced in female rats when compared to male rats. Since gonadectomy did not alter the course of cardiac atrophy after HTx, similarly in both male and female rats, we conclude that sex-linked differences in the development of unloading-induced cardiac atrophy are not caused by the activity of sex hormones.
Collapse
Affiliation(s)
- D M Kolesár
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Janovičová Ľ, Gromová B, Drobná D, Konečná B, Renczés E, Borbélyová V, Hodosy J, Celec P. Sex Difference in Plasma Deoxyribonuclease Activity in Rats. Physiol Res 2021; 70:913-920. [PMID: 34717068 PMCID: PMC8815475 DOI: 10.33549/physiolres.934766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Extracellular DNA (ecDNA) activates immune cells and is involved in the pathogenesis of diseases associated with inflammation such as sepsis, rheumatoid arthritis or metabolic syndrome. DNA can be cleaved by deoxyribonucleases (DNases), some of which are secreted out of cells. The aim of this experiment was to describe plasma DNase activity in relation to extracellular DNA in adult rats, to analyse potential sex differences and to prove whether they are related to endogenous testosterone. Adult Lewis rats (n=28) of both sexes were included in the experiment. Male rats were gonadectomized or sham-operated and compared to intact female rats. Plasma ecDNA and DNase activity were measured using fluorometry and single radial enzyme diffusion assay, respectively. Concentrations of nuclear ecDNA and mitochondrial ecDNA were determined using real-time PCR. Females had 60% higher plasma DNase activity than males ( p=0.03). Gonadectomy did not affect plasma DNase in males. Neither the concentration of total ecDNA, nor nuclear or mitochondrial DNA in plasma differed between the groups. No significant correlations between DNase and ecDNA were found. From previous studies on mice, it was expected, that male rats will have higher DNase activity. In contrast, our study in rats showed the opposite sex difference. This sex difference seems not to be caused by endogenous testosterone. Interestingly, no sex differences were observed in plasma ecDNA suggesting a complex or missing association between plasma ecDNA and DNase. The observed sex difference in plasma DNase should be taken into account in animal models of ecDNA-associated diseases.
Collapse
Affiliation(s)
- Ľ Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Janovičová Ľ, Gromová B, Drobná D, Konečná B, Renczés E, Borbélyová V, Hodosy J, Celec P. Sex Difference in Plasma Deoxyribonuclease Activity in Rats. Physiol Res 2021. [DOI: 10.33549//physiolres.934766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Extracellular DNA (ecDNA) activates immune cells and is involved in the pathogenesis of diseases associated with inflammation such as sepsis, rheumatoid arthritis or metabolic syndrome. DNA can be cleaved by deoxyribonucleases (DNases), some of which are secreted out of cells. The aim of this experiment was to describe plasma DNase activity in relation to extracellular DNA in adult rats, to analyse potential sex differences and to prove whether they are related to endogenous testosterone. Adult Lewis rats (n=28) of both sexes were included in the experiment. Male rats were gonadectomized or sham-operated and compared to intact female rats. Plasma ecDNA and DNase activity were measured using fluorometry and single radial enzyme diffusion assay, respectively. Concentrations of nuclear ecDNA and mitochondrial ecDNA were determined using real-time PCR. Females had 60% higher plasma DNase activity than males (p=0.03). Gonadectomy did not affect plasma DNase in males. Neither the concentration of total ecDNA, nor nuclear or mitochondrial DNA in plasma differed between the groups. No significant correlations between DNase and ecDNA were found. From previous studies on mice, it was expected, that male rats will have higher DNase activity. In contrast, our study in rats showed the opposite sex difference. This sex difference seems not to be caused by endogenous testosterone. Interestingly, no sex differences were observed in plasma ecDNA suggesting a complex or missing association between plasma ecDNA and DNase. The observed sex difference in plasma DNase should be taken into account in animal models of ecDNA-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - P. Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
7
|
Mostafa RE, Shaffie NM, Allam RM. Panax Ginseng alleviates thioacetamide-induced liver injury in ovariectomized rats: Crosstalk between inflammation and oxidative stress. PLoS One 2021; 16:e0260507. [PMID: 34843587 PMCID: PMC8629276 DOI: 10.1371/journal.pone.0260507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
Liver diseases impose a substantial health problem. Female hormones play a crucial role in the protection against chronic inflammatory diseases. Fifty female rats were allocated into five groups (n = 10). Group I comprised sham-operated rats. The remaining groups underwent ovariectomy at the beginning of the experiment. Group II served as the ovariectomy-control group. Groups III, IV & V received thioacetamide (TAA; 300 mg/kg; i.p.) to induce liver injury 6 weeks after ovariectomy. Group III served as the TAA-control group. Groups IV & V received panax ginseng (100 and 300 mg/kg/day, p.o.) for 6 weeks post TAA administration. All groups were investigated for liver function tests along with total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α) and advanced glycation end products (AGEs). Histopathological examination of liver tissues was performed followed by immunohistochemical staining for nuclear factor kappa-B (NF-kβ p65) and myeloperoxidase (MPO). Ovariectomized-rats showed a non-significant change in the measured parameters while TAA administration resulted in significant liver damage. Panax ginseng at both dose levels significantly improved the serum liver function tests and TAC along with decreasing the AGEs and TNF-α. It also restored the histopathological picture of liver tissue and decreased hepatic tissue inflammation via reduction of MPO and NF-kβ p65 immunoreactivity. The current study is the first to elucidate the effect of panax ginseng against TAA-induced liver injury in ovariectomized rats which mimic aged post-menopausal estrogen-deficient females. The study demonstrates the crosstalk between AGEs, NF-kβ and MPO in the modulation of inflammation. Panax ginseng possesses antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Rasha E. Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Nermeen M. Shaffie
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rasha M. Allam
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|