1
|
Follprecht D, Vavricka J, Johankova V, Broz P, Krouzecky A. Mitochondria in focus: From structure and function to their role in human diseases. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40237329 DOI: 10.5507/bp.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mitochondria, double-membraned organelles within all eukaryotic cells, are essential for the proper functioning of the human organism. The frequently used phrase "powerhouses of the cell" fails to adequately capture their multifaceted roles. In addition to producing energy in the form of adenosine triphosphate through oxidative phosphorylation, mitochondria are also involved in apoptosis (programmed cell death), calcium regulation, and signaling through reactive oxygen species. Recent research suggests that they can communicate with one another and influence cellular processes. Impaired mitochondrial function on the one hand, can have widespread and profound effects on cellular and organismal health, contributing to various diseases and age-related conditions. Regular exercise on the other hand, promotes mitochondrial health by enhancing their volume, density, and functionality. Although research has made significant progress in the last few decades, mainly through the use of modern technologies, there is still a need to intensify research efforts in this field. Exploring new approaches to enhance mitochondrial health could potentially impact longevity. In this review, we focus on mitochondrial research and discoveries, examine the structure and diverse roles of mitochondria in the human body, explore their influence on energy metabolism and cellular signaling and emphasize their importance in maintaining overall health.
Collapse
Affiliation(s)
- Daniel Follprecht
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakub Vavricka
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktorie Johankova
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Broz
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Clinical Biochemistry and Hematology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ales Krouzecky
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
2
|
Korandová Z, Pecina P, Pecinová A, Koňaříková E, Tesařová M, Houštěk J, Hansíková H, Ptáčková H, Zeman J, Honzík T, Mráček T. Cryopreserved PBMCs can be used for the analysis of mitochondrial respiration and serve as a diagnostic tool for mitochondrial diseases. Anal Biochem 2025; 698:115745. [PMID: 39645068 DOI: 10.1016/j.ab.2024.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Mitochondrial diseases are severe, inherited metabolic disorders that affect the paediatric population. They affect the functioning of mitochondrial oxidative phosphorylation (OXPHOS) apparatus either directly or indirectly. Since mutations in mtDNA are responsible for only 25 % of paediatric cases and next-generation sequencing does not always provide a conclusive diagnosis, the biochemical approach still represents a valuable tool in diagnostics. Mitochondrial defects can be identified in tissue biopsies (muscle or skin). However, they also often manifest in peripheral blood cells. We developed a protocol for isolation and cryopreservation of peripheral blood mononuclear cells (PBMCs) from 5 ml of children's blood using Ficoll centrifugation which can be utilised for subsequent functional measurements on thawed samples. Furthermore, we evaluated the diagnostic utility of the optimised high-resolution oxygraphy protocol using digitonin-permeabilized cryopreserved PBMCs on 47 samples from patients with confirmed or suspected mitochondrial disease. Overall, the diagnosis was confirmed in 72 % of cases, while the analysis of cryopreserved PBMCs provided a false negative outcome in 13 % of cases. Our study demonstrates a sensitive, fast, and non-invasive approach for the diagnostics of various types of mitochondrial disorders, especially those of nuclear genetic origin manifesting in paediatric patients.
Collapse
Affiliation(s)
- Zuzana Korandová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Tesařová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Ptáčková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Čunátová K, Fernández‐Vizarra E. Pathological variants in nuclear genes causing mitochondrial complex III deficiency: An update. J Inherit Metab Dis 2024; 47:1278-1291. [PMID: 39053894 PMCID: PMC11586608 DOI: 10.1002/jimd.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial disorders are a group of clinically and biochemically heterogeneous genetic diseases within the group of inborn errors of metabolism. Primary mitochondrial diseases are mainly caused by defects in one or several components of the oxidative phosphorylation system (complexes I-V). Within these disorders, those associated with complex III deficiencies are the least common. However, thanks to a deeper knowledge about complex III biogenesis, improved clinical diagnosis and the implementation of next-generation sequencing techniques, the number of pathological variants identified in nuclear genes causing complex III deficiency has expanded significantly. This updated review summarizes the current knowledge concerning the genetic basis of complex III deficiency, and the main clinical features associated with these conditions.
Collapse
Affiliation(s)
- Kristýna Čunátová
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Erika Fernández‐Vizarra
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| |
Collapse
|
4
|
Differential effects of mTOR inhibition and dietary ketosis in a mouse model of subacute necrotizing encephalomyelopathy. Neurobiol Dis 2022; 163:105594. [PMID: 34933094 PMCID: PMC8770160 DOI: 10.1016/j.nbd.2021.105594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
Genetic mitochondrial diseases are the most frequent cause of inherited metabolic disorders and one of the most prevalent causes of heritable neurological disease. Leigh syndrome is the most common clinical presentation of pediatric mitochondrial disease, typically appearing in the first few years of life, and involving severe multisystem pathologies. Clinical care for Leigh syndrome patients is difficult, complicated by the wide range of symptoms including characteristic progressive CNS lesion, metabolic sequelae, and epileptic seizures, which can be intractable to standard management. While no proven therapies yet exist for the underlying mitochondrial disease, a ketogenic diet has led to some reports of success in managing mitochondrial epilepsies, with ketosis reducing seizure risk and severity. The impact of ketosis on other aspects of disease progression in Leigh syndrome has not been studied, however, and a rigorous study of the impact of ketosis on seizures in mitochondrial disease is lacking. Conversely, preclinical efforts have identified the intracellular nutrient signaling regulator mTOR as a promising therapeutic target, with data suggesting the benefits are mediated by metabolic changes. mTOR inhibition alleviates epilepsies arising from defects in TSC, an mTOR regulator, but the therapeutic potential of mTOR inhibition in seizures related to primary mitochondrial dysfunction is unknown. Given that ketogenic diet is used clinically in the setting of mitochondrial disease, and mTOR inhibition is in clinical trials for intractable pediatric epilepsies of diverse causal origins, a direct experimental assessment of their effects is imperative. Here, we define the impact of dietary ketosis on survival and CNS disease in the Ndufs4(KO) mouse model of Leigh syndrome and the therapeutic potential of both dietary ketosis and mTOR inhibition on seizures in this model. These data provide timely insight into two important clinical interventions.
Collapse
|
5
|
Marković A, Tauchmannová K, Šimáková M, Mlejnek P, Kaplanová V, Pecina P, Pecinová A, Papoušek F, Liška F, Šilhavý J, Mikešová J, Neckář J, Houštěk J, Pravenec M, Mráček T. Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat. Biomedicines 2022; 10:276. [PMID: 35203486 PMCID: PMC8869460 DOI: 10.3390/biomedicines10020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations of the TMEM70 gene disrupt the biogenesis of the ATP synthase and represent the most frequent cause of autosomal recessive encephalo-cardio-myopathy with neonatal onset. Patient tissues show isolated defects in the ATP synthase, leading to the impaired mitochondrial synthesis of ATP and insufficient energy provision. In the current study, we tested the efficiency of gene complementation by using a transgenic rescue approach in spontaneously hypertensive rats with the targeted Tmem70 gene (SHR-Tmem70ko/ko), which leads to embryonic lethality. We generated SHR-Tmem70ko/ko knockout rats expressing the Tmem70 wild-type transgene (SHR-Tmem70ko/ko,tg/tg) under the control of the EF-1α universal promoter. Transgenic rescue resulted in viable animals that showed the variable expression of the Tmem70 transgene across the range of tissues and only minor differences in terms of the growth parameters. The TMEM70 protein was restored to 16-49% of the controls in the liver and heart, which was sufficient for the full biochemical complementation of ATP synthase biogenesis as well as for mitochondrial energetic function in the liver. In the heart, we observed partial biochemical complementation, especially in SHR-Tmem70ko/ko,tg/0 hemizygotes. As a result, this led to a minor impairment in left ventricle function. Overall, the transgenic rescue of Tmem70 in SHR-Tmem70ko/ko knockout rats resulted in the efficient complementation of ATP synthase deficiency and thus in the successful genetic treatment of an otherwise fatal mitochondrial disorder.
Collapse
Affiliation(s)
- Aleksandra Marković
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Kateřina Tauchmannová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Vilma Kaplanová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Petr Pecina
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Alena Pecinová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - František Liška
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Jana Mikešová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Josef Houštěk
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.M.); (K.T.); (M.Š.); (P.M.); (V.K.); (P.P.); (A.P.); (F.P.); (F.L.); (J.Š.); (J.M.); (J.N.); (J.H.)
| |
Collapse
|