1
|
Spicer LJ, Maylem ERS, Schütz LF. Granulosa cell function in domestic animals: A review on the in vitro effects of FSH, insulin and insulin-like growth factor 1. Domest Anim Endocrinol 2025; 91:106919. [PMID: 39879874 DOI: 10.1016/j.domaniend.2025.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Ovarian granulosa cells produce a variety of biologically active compounds in addition to steroid hormones that include numerous families of growth factors, cytokines and adipokines. Many of these function as endocrine, paracrine and autocrine hormones to regulate ovarian activity. The goal of this review is to provide an update on the evidence in domestic animals on how FSH, insulin and IGF1 regulate the function of granulosa cells with a focus on ovarian steroidogenesis and cell proliferation with comparisons across six domestic animals: pigs, cattle, horses, water buffalo, goats and sheep. In most species, FSH was not a mitogenic stimulus to granulosa cells whereas insulin and IGF1 were stimulatory to cell proliferation in the species it was evaluated. FSH, insulin and IGF1 were all stimulatory to granulosa cell steroidogenesis in the species it was studied. More research is needed to evaluate the role of insulin in the regulation of cell proliferation and steroidogenesis in water buffalo and goats. The role of IGF1 in regulating granulosa cell function in horses also needs further study. Most granulosa-cell secreted factors have direct effects (either positive or negative) on FSH-, insulin- and IGF1-induced steroid production in ovarian cells, but how they all work together to create a cumulative effect to regulate fertility will require further research.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078 USA.
| | - Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV, 89557 USA
| |
Collapse
|
2
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
3
|
Nandi S, Kumar B S, Gupta PSP, Mondal S, Kumar VG. Influence of phenolic flavonols (Kaempferol, Querectin and Myricetin) on the survival and growth of ovine preantral follicles and granulosa cells cultured in vitro. Theriogenology 2024; 214:266-272. [PMID: 37948816 DOI: 10.1016/j.theriogenology.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Study was carried out to examine the influence of plant bioactive compounds [Kaempferol (KAE), Querectin (QUE) and Myricetin (MYR)] on the survival and growth parameters of cultured ovine preantral follicles (PFs) granulosa cells (GCs) and expression of some key developmental genes. Ovine PFs were isolated from slaughterhouse derived ovaries and KAE, QUE and MYR were supplemented to the standard culture medium of GCs and PFs at concentrations of 0, 5, 10, 25, 50 and 100 μM and cultured for 5 and 7 days respectively. PFs morphological and functional parameters [follicle and enclosed oocyte growth rate, viability of follicles, antrum formation rate, oocyte maturation rate, estradiol concentration, reactive oxygen species (ROS) production] and GC growth parameters (metabolic activity, viability rate, cell number increment, ROS production) were measured after culture. Significantly higher PF growth, viability rate and estradiol concentration was observed at 10 μM, 25 μM and 10 μM concentration of KAE, MYR and QUE respectively compared to the control. ROS production was significantly decreased in the PF culture media treated with 10 μM KAE or MYR 25 μM or 10 μM QUE compared to those observed in the control group. Likewise, metabolic activity of GCs, viability rate and cell number increment cultured with KAE, MYR and QUE was significantly higher at 10, 25 and 10 μM concentrations respectively compared to those observed in control group. ROS production was significantly lower in the GC cultured with KAE, MYR and QUE at 10, 25 and 10 μM concentrations respectively compared to the control. Based on the results of the growth parameters, gene expression of PFs and GCs were studied by qPCR at selected concentrations (KAE, MYR and QUE at 10, 25 and 10 μM concentrations respectively) in the cultured PFs and GCs. Gene expression of GDF9, FGF2, CYP19A1 was significantly higher and Bax, Bcl2 expression was significantly lower in the PFs and GCs cultured with the KAE or QUE at 10 μM concentration. KAE, MYR and QUE have dose dependant responses on PFs and GCs morphological and functional parameters; however, KAE is more potent amongst the three in augmenting the ovarian functions.
Collapse
Affiliation(s)
- S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India.
| | - Sampath Kumar B
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India; Veterinary College, Bangalore Campus, Hebbal, Bangalore, India
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - V Girish Kumar
- Veterinary College, Bangalore Campus, Hebbal, Bangalore, India
| |
Collapse
|