1
|
Rahman MA, Datta S, Lakkakula H, Koka S, Boini KM. Acid Sphingomyelinase and Ceramide Signaling Pathway Mediates Nicotine-Induced NLRP3 Inflammasome Activation and Podocyte Injury. Biomedicines 2025; 13:416. [PMID: 40002829 PMCID: PMC11852453 DOI: 10.3390/biomedicines13020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Recent studies have shown that Nlrp3 inflammasome activation is importantly involved in podocyte dysfunction induced by nicotine. The present study was designed to test whether acid sphingomyelinase (Asm) and ceramide signaling play a role in mediating nicotine-induced Nlrp3 inflammasome activation and subsequent podocyte damage. Methods and Results: Nicotine treatment significantly increased the Asm expression and ceramide production compared to control cells. However, prior treatment with amitriptyline, an Asm inhibitor significantly attenuated the nicotine-induced Asm expression and ceramide production. Confocal microscopic and biochemical analyses showed that nicotine treatment increased the colocalization of NLRP3 with Asc, Nlrp3 vs. caspase-1, IL-1β production, caspase-1 activity, and desmin expression in podocytes compared to control cells. Pretreatment with amitriptyline abolished the nicotine-induced colocalization of NLRP3 with Asc, Nlrp3 with caspase-1, IL-1β production, caspase-1 activity and desmin expression. Immunofluorescence analyses showed that nicotine treatment significantly decreased the podocin expression compared to control cells. However, prior treatment with amitriptyline attenuated the nicotine-induced podocin reduction. In addition, nicotine treatment significantly increased the cell permeability, O2 production, and apoptosis compared to control cells. However, prior treatment with amitriptyline significantly attenuated the nicotine-induced cell permeability, O2 production and apoptosis in podocytes. Conclusions: Asm is one of the important mediators of nicotine-induced inflammasome activation and podocyte injury. Asm may be a therapeutic target for the treatment or prevention of glomerulosclerosis associated with smoking.
Collapse
Affiliation(s)
- Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Houston, TX 77204, USA (H.L.)
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Houston, TX 77204, USA (H.L.)
| | - Harini Lakkakula
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Houston, TX 77204, USA (H.L.)
- Novi High School, Novi, MI 48375, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Houston, TX 77204, USA (H.L.)
| |
Collapse
|
2
|
Datta S, Rahman MA, Koka S, Boini KM. High mobility group box 1 (HMGB1) mediates nicotine-induced podocyte injury. Front Pharmacol 2025; 15:1540639. [PMID: 39840112 PMCID: PMC11747285 DOI: 10.3389/fphar.2024.1540639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Cigarette smoking is a well-established risk factor for renal dysfunction. Smoking associated with renal damage bears distinct physiological correlations in conditions such as diabetic nephropathy and obesity-induced glomerulopathy. However, the cellular and molecular basis of such an association remains poorly understood. High mobility group box 1(HMGB1) is a highly conserved non-histone chromatin associated protein that largely contributes to the pathogenesis of chronic inflammatory and autoimmune diseases such as sepsis, atherosclerosis, and chronic kidney diseases. Hence, the present study tested whether HMGB1 contributes to nicotine-induced podocyte injury. Methods and Results Biochemical analysis showed that nicotine treatment significantly increased the HMGB1 expression and release compared to vehicle treated podocytes. However, prior treatment with glycyrrhizin (Gly), a HMGB1 binder, abolished the nicotine-induced HMGB1 expression and release in podocytes. Furthermore, immunofluorescent analysis showed that nicotine treatment significantly decreased the expression of podocyte functional proteins- podocin and nephrin as compared to control cells. However, prior treatment with Gly attenuated the nicotine-induced nephrin and podocin reduction. In addition, nicotine treatment significantly increased desmin expression and cell permeability compared to vehicle treated podocytes. However, prior treatment with Gly attenuated the nicotine-induced desmin expression and cell permeability. Mechanistic elucidation revealed that nicotine treatment augmented the expression of toll like receptor 4 (TLR4) and pre-treatment with Gly abolished nicotine induced TLR4 upregulation. Pharmacological inhibition of TLR4 with Resatorvid, a TLR4 specific inhibitor, also attenuated nicotine induced podocyte damage. Conclusion HMGB1 is one of the important mediators of nicotine-induced podocyte injury through TLR4 activation.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Koka S, Surineni S, Singh GB, Boini KM. Contribution of membrane raft redox signalling to visfatin-induced inflammasome activation and podocyte injury. Aging (Albany NY) 2023; 15:12738-12748. [PMID: 38032896 DOI: 10.18632/aging.205243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Recently we have shown that adipokine visfatin-induced NLRP3 inflammasome activation contributes to podocyte injury. However, the molecular mechanisms of how visfatin-induces the Nlrp3 inflammasome activation and podocyte damage is still unknown. The present study tested whether membrane raft (MR) redox signalling pathway plays a central role in visfatin-induced NLRP3 inflammasomes formation and activation in podocytes. Upon visfatin stimulation an aggregation of NADPH oxidase subunits, gp91phox and p47phox was observed in the membrane raft (MR) clusters, forming a MR redox signalling platform in podocytes. The formation of this signalling platform was blocked by prior treatment with MR disruptor MCD or NADPH oxidase inhibitor DPI. In addition, visfatin stimulation significantly increased the colocalization of Nlrp3 with Asc or Nlrp3 with caspase-1, IL-β production, cell permeability in podocytes compared to control cells. Pretreatment with MCD, DPI, WEHD significantly abolished the visfatin-induced colocalization of NLRP3 with Asc or NLRP3 with caspase-1, IL-1β production and cell permeability in podocytes. Furthermore, Immunofluorescence analysis demonstrated that visfatin treatment significantly decreased the podocin and nephrin expression (podocyte damage) and prior treatments with DPI, WEHD, MCD attenuated this visfatin-induced podocin and nephrin reduction. In conclusion, our results suggest that visfatin stimulates membrane raft clustering in the membrane of podocytes to form redox signaling platforms by aggregation and activation of NADPH oxidase subunits enhancing O2·- production and leading to NLRP3 inflammasome activation in podocytes and ultimate podocyte injury.
Collapse
Affiliation(s)
- Saisudha Koka
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sreenidhi Surineni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Division of Biomedical Sciences, University of California, Riverside, CA 92130, USA
| | - Gurinder Bir Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
6
|
Huang D, Kidd JM, Zou Y, Wu X, Gehr TWB, Li PL, Li G. Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity. Inflammation 2023; 46:2037-2054. [PMID: 37477734 PMCID: PMC10777441 DOI: 10.1007/s10753-023-01861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
The activation of nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been reported to importantly contribute to glomerular inflammation and injury under different pathological conditions such as obesity. However, the mechanism mediating NLRP3 inflammasome activation in podocytes and subsequent glomerular injury remains poorly understood. Given that the ceramide signaling pathway has been reported to be implicated in obesity-related glomerulopathy (ORG), the present study was designed to test whether the ceramide-producing enzyme, acid sphingomyelinase (ASM), determines NLRP3 inflammasome activation and inflammatory exosome release in podocytes leading to glomerular inflammation and injury during ORG. In Smpd1trg/Podocre mice, podocyte-specific overexpression of Smpd1 gene which encodes ASM significantly exaggerated high-fat diet (HFD)-induced NLRP3 inflammasome activation in podocytes and immune cell infiltration in glomeruli compared to WT/WT mice. Smpd1 gene deletion, however, blocked these pathological changes induced by HFD in Smpd1-/- mice. Accompanied with NLRP3 inflammasome activation and glomerular inflammation, urinary excretion of exosomes containing podocyte marker and NLRP3 inflammasome products (IL-1β and IL-18) in Smpd1trg/Podocre mice on the HFD was much higher than that in WT/WT mice. In contrast, Smpd1-/- mice on the HDF had significantly lower urinary exosome excretion than WT/WT mice. Correspondingly, HFD-induced podocyte injury, glomerular sclerosis, and proteinuria were more severe in Smpd1trg/Podocre mice, but milder in Smpd1-/- mice compared to WT/WT mice. Using podocytes isolated from these mice, we demonstrated that visfatin, a prototype pro-inflammatory adipokine, induced NLRP3 inflammasome activation and enrichment of multivesicular bodies (MVBs) containing IL-1β in podocytes, which was much stronger in podocytes from Smpd1trg/Podocre mice, but weaker in those from Smpd1-/- mice than WT/WT podocytes. By quantitative analysis of exosomes, it was found that upon visfatin stimulation, podocytes from Smpd1trg/Podocre mice released much more exosomes containing NLRP3 inflammasome products, but podocytes from Smpd1-/- mice released much less exosomes compared to WT/WT podocytes. Super-resolution microscopy demonstrated that visfatin inhibited lysosome-MVB interaction in podocytes, indicating impaired MVB degradation by lysosome. The inhibition of lysosome-MVB interaction by visfatin was amplified by Smpd1 gene overexpression but attenuated by Smpd1 gene deletion. Taken together, our results suggest that ASM in podocytes is a crucial regulator of NLRP3 inflammasome activation and inflammatory exosome release that instigate glomerular inflammation and injury during obesity.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason M Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoyuan Wu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Kunte SC, Marschner JA, Klaus M, Honda T, Li C, Motrapu M, Walz C, Angelotti ML, Antonelli G, Melica ME, De Chiara L, Semeraro R, Nelson PJ, Anders HJ. No NLRP3 inflammasome activity in kidney epithelial cells, not even when the NLRP3-A350V Muckle-Wells variant is expressed in podocytes of diabetic mice. Front Immunol 2023; 14:1230050. [PMID: 37744356 PMCID: PMC10513077 DOI: 10.3389/fimmu.2023.1230050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background The NLRP3 inflammasome integrates several danger signals into the activation of innate immunity and inflammation by secreting IL-1β and IL-18. Most published data relate to the NLRP3 inflammasome in immune cells, but some reports claim similar roles in parenchymal, namely epithelial, cells. For example, podocytes, epithelial cells critical for the maintenance of kidney filtration, have been reported to express NLRP3 and to release IL-β in diabetic kidney disease, contributing to filtration barrier dysfunction and kidney injury. We questioned this and hence performed independent verification experiments. Methods We studied the expression of inflammasome components in human and mouse kidneys and human podocytes using single-cell transcriptome analysis. Human podocytes were exposed to NLRP3 inflammasome agonists in vitro and we induced diabetes in mice with a podocyte-specific expression of the Muckle-Wells variant of NLRP3, leading to overactivation of the Nlrp3 inflammasome (Nphs2Cre;Nlrp3A350V) versus wildtype controls. Phenotype analysis included deep learning-based glomerular and podocyte morphometry, tissue clearing, and STED microscopy of the glomerular filtration barrier. The Nlrp3 inflammasome was blocked by feeding ß-hydroxy-butyrate. Results Single-cell transcriptome analysis did not support relevant NLRP3 expression in parenchymal cells of the kidney. The same applied to primary human podocytes in which NLRP3 agonists did not induce IL-1β or IL-18 secretion. Diabetes induced identical glomerulomegaly in wildtype and Nphs2Cre;Nlrp3A350V mice but hyperfiltration-induced podocyte loss was attenuated and podocytes were larger in Nphs2Cre;Nlrp3A350V mice, an effect reversible with feeding the NLRP3 inflammasome antagonist ß-hydroxy-butyrate. Ultrastructural analysis of the slit diaphragm was genotype-independent hence albuminuria was identical. Conclusion Podocytes express low amounts of the NLRP3 inflammasome, if at all, and do not produce IL-1β and IL-18, not even upon introduction of the A350V Muckle-Wells NLRP3 variant and upon induction of podocyte stress. NLRP3-mediated glomerular inflammation is limited to immune cells.
Collapse
Affiliation(s)
- Sophie Carina Kunte
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian A. Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Martin Klaus
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Tâmisa Honda
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Christoph Walz
- Pathologisches Institut, Medizinische Fakultät, LMU München, Munich, Germany
| | - Maria Lucia Angelotti
- Department of Experimental and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Giulia Antonelli
- Department of Experimental and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Elena Melica
- Department of Experimental and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Experimental and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Peter J. Nelson
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
8
|
Sui C, Zhou D. ADAM metallopeptidase domain 10 knockdown enables podocytes to resist high glucose stimulation by inhibiting pyroptosis via MAPK pathway. Exp Ther Med 2023; 25:260. [PMID: 37153901 PMCID: PMC10155254 DOI: 10.3892/etm.2023.11959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a common severe microvascular complication of diabetes mellitus, and podocyte damage occurs in the early stages of DN. The urine of patients with various types of glomerular disease presents increased levels of ADAM metallopeptidase domain 10 (ADAM10). The present study aimed to explore the role of ADAM10 in podocyte damage. Therefore, the expression of ADAM10 in high glucose (HG)-stimulated podocytes was measured by reverse transcription-qPCR and western blot. Moreover, the effects of ADAM10 knockdown on podocyte inflammation and apoptosis were determined by ELISA, western blot and TUNEL assay after confirming the efficacy of cell transfection. Subsequently, the effects of ADAM10 knockdown on the MAPK pathway and pyroptosis were assessed by western blot. Through performing the aforementioned experiments, the role of the MAPK pathway in the regulatory effects of ADAM10 was then investigated by pretreating podocytes with pathway agonists. ADAM10 expression was upregulated in HG-stimulated podocytes, while ADAM10 knockdown suppressed inflammation, apoptosis and pyroptosis of HG-stimulated podocytes and inhibited the activation of the MAPK signaling pathway. However, when podocytes were pretreated with pathway agonists (LM22B-10 or p79350), the aforementioned effects of ADAM10 knockdown were suppressed. The present study demonstrated that ADAM10 knockdown suppressed the inflammation, apoptosis and pyroptosis of HG-stimulated podocytes by blocking the MAPK signaling pathway.
Collapse
Affiliation(s)
- Chunjie Sui
- Department of General Practice, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dan Zhou
- Department of Ophthalmology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, P.R. China
- Correspondence to: Dr Dan Zhou, Department of Ophthalmology, The First Dongguan Affiliated Hospital of Guangdong Medical University, 42 Jiaoping Road, Dongguan, Guangdong 523710, P.R. China
| |
Collapse
|
9
|
An X, Li G, Wang S, Xie T, Ren X, Zhao Y. Renoprotection by Inhibiting Connexin 43 Expression in a Mouse Model of Obesity-Related Renal Injury. Diabetes Metab Syndr Obes 2023; 16:1415-1424. [PMID: 37220614 PMCID: PMC10200121 DOI: 10.2147/dmso.s412546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Our previous study conducted in an obesity-related renal injury rat model have established a connection between increased connexin 43 (Cx43) expression and renal injury. In this study, we investigated whether inhibiting Cx43 expression could provide renoprotection in a mouse model of obesity-related renal injury. Methods Five-week-old C57BL/6J mice were fed with a high-fat diet for 12 weeks to establish an obesity-related renal injury model, then they were treated with Cx43 antisense oligodeoxynucleotide (AS) or scrambled oligodeoxynucleotide (SCR) by an implanted osmotic pump for 4 weeks. Finally, the glomerular filtration function, the histological change in the glomeruli, and the markers of podocyte injury (WT-1, Nephrin) and inflammatory infiltration of renal tissue (CD68, F4/80 and VCAM-1) were examined respectively. Results The results showed that inhibiting Cx43 expression by AS in this mouse model of obesity-related renal injury can effectively improve glomerular filtration function, alleviate glomerular expansion and podocyte injury, and attenuate the inflammatory infiltration of renal tissue. Conclusion Our results demonstrated that inhibiting Cx43 expression by AS could provide renoprotection for the mouse model of obesity-related renal injury.
Collapse
Affiliation(s)
- Xiaomin An
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
- Department of Nephrology, Xi’an Children’s Hospital, Xi’an, 710003, People’s Republic of China
| | - Guohua Li
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Shu Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Tianrun Xie
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Xiaoxiao Ren
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Yongli Zhao
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| |
Collapse
|
10
|
Targeting Pyroptosis: New Insights into the Treatment of Diabetic Microvascular Complications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5277673. [PMID: 36204129 PMCID: PMC9532106 DOI: 10.1155/2022/5277673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is dependent on inflammatory caspases, leading to the cleavage of gasdermin D (GSDMD) and increased secretion of interleukin (IL)-1β and IL-18. Recent studies have reported that hyperglycemia-induced cellular stress stimulates pyroptosis, and different signaling pathways have been shown to play crucial roles in regulating pyroptosis. This review summarized and discussed the molecular mechanisms, regulation, and cellular effects of pyroptosis in diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. In addition, this review aimed to provide new insights into identifying better treatments for diabetic microvascular complications.
Collapse
|
11
|
Dakroub A, A. Nasser S, Younis N, Bhagani H, Al-Dhaheri Y, Pintus G, Eid AA, El-Yazbi AF, Eid AH. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020; 9:2444. [PMID: 33182523 PMCID: PMC7696687 DOI: 10.3390/cells9112444] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis, with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly, eNAMPT has been associated with several metabolic disorders including obesity and type 1 and 2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical significance with a prospective promising diagnostic, prognostic, and therapeutic applications in many cardiovasculo-metabolic disorders.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
| | - Nour Younis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Humna Bhagani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, UAE;
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah P.O. Box 27272, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria 21521, El-Mesallah, Egypt
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
12
|
Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res 2020; 43:997-1016. [PMID: 33078304 DOI: 10.1007/s12272-020-01274-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Aberrant production of adipokines, a group of adipocytes-derived hormones, is considered one of the most important pathological characteristics of obesity. In individuals with obesity, beneficial adipokines, such as adiponectin are downregulated, whereas leptin and other pro-inflammatory adipokines are highly upregulated. Hence, the imbalance in levels of these adipokines is thought to promote the development of obesity-linked complications. However, the mechanisms by which adipokines contribute to the pathogenesis of various diseases have not been clearly understood. Inflammasomes represent key signaling platform that triggers the inflammatory and immune responses through the processing of the interleukin family of pro-inflammatory cytokines in a caspase-1-dependent manner. Beyond their traditional function as a component of the innate immune system, inflammasomes have been recently integrated into the pathological process of multiple metabolism- and obesity-related disorders such as cardiovascular diseases, diabetes, fatty liver disease, and cancer. Interestingly, emerging evidence also highlights the role of adipokines in the modulation of inflammasomes activation, making it a promising mechanism underlying distinct biological actions of adipokines in diseases driven by inflammation and metabolic disorders. In this review, we summarize the effects of adipokines, in particular adiponectin, leptin, visfatin and apelin, on inflammasomes activation and their implications in the pathophysiology of obesity-linked complications.
Collapse
|
13
|
Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol 2020; 8:140. [PMID: 32226786 PMCID: PMC7080656 DOI: 10.3389/fcell.2020.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing risk of long-term adverse effects from radiotherapy on the cardiovascular structure is receiving increasing attention. However, the mechanisms underlying this increased risk remain poorly understood. Recently, the nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome was suggested to play a critical role in radiation-induced cardiovascular injury. However, the relationship between ionizing radiation and the NLRP3 inflammasome in acute and chronic inflammation is complex. We reviewed literature detailing pathological changes and molecular mechanisms associated with radiation-induced damage to the cardiovascular structure, with a specific focus on NLRP3 inflammasome-related cardiovascular diseases. We also summarized possible therapeutic strategies for the prevention of radiation-induced heart disease (RIHD).
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Xiang H, Zhu F, Xu Z, Xiong J. Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical Pathways. Front Cell Dev Biol 2020; 8:106. [PMID: 32175320 PMCID: PMC7056742 DOI: 10.3389/fcell.2020.00106] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes, multiprotein complex induced by harmful factors in the body, play a crucial role in innate immunity. Activation of inflammasomes lead to the activation of casepase-1 and then the secretion of inflammatory cytokines, including IL-1β and IL-18, subsequently leading to a type of cell death called pyroptosis. There are two types of signaling pathways involved in the process of inflammasome activation: the canonical and the non-canonical signaling pathway. The canonical signaling pathway is mainly dependent on casepase-1; the non-canonical signal pathway, which was recently discovered, is mainly dependent on caspase-11, but is also meditated by caspase-4, caspase-5, and caspase-8. Kidney inflammation is basically associated with inflammatory factor exudation and inflammatory cell infiltration. Several studies have showed that inflammasomes are closely related to kidney diseases, especially the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, which play a role in regulating kidney inflammation and fibrosis. In this review, we focus on the relationship between inflammasomes and kidney diseases, especially the role of the NLRP3 inflammasome in different kinds of kidney disease via both canonical and non-canonical signal pathways.
Collapse
Affiliation(s)
- Huiling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifeng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Nicotine instigates podocyte injury via NLRP3 inflammasomes activation. Aging (Albany NY) 2019; 11:12810-12821. [PMID: 31835256 PMCID: PMC6949070 DOI: 10.18632/aging.102611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
Background/Aims: Recent studies have shown that nicotine induces podocyte damage. However, it remains unknown how nicotine induces podocyte injury. The present study tested whether nicotine induces NLRP3 inflammasomes activation and thereby contributes to podocyte injury. Results: Nicotine treatment significantly increased the colocalization of NLRP3 with Asc, caspase-1 activity, IL-β production, cell permeability in podocytes compared to control cells. Pretreatment with caspase-1 inhibitor, WEHD significantly abolished the nicotine-induced colocalization of NLRP3 with Asc, caspase-1 activity, IL-1β production and cell permeability in podocytes. Immunofluorescence analysis showed that nicotine treatment significantly decreased the podocin and nephrin expression compared to control cells. However, prior treatment with WEHD attenuated the nicotine-induced podocin and nephrin reduction. In addition, we found that nicotine treatment significantly increased the O2.- production compared to control cells. However, prior treatment with WEHD did not alter the nicotine-induced O2.- production. Furthermore, prior treatment with ROS scavenger, NAC significantly attenuated the nicotine-induced caspase-1 activity, IL-1β production, podocin and nephrin reduction in podocytes. Conclusions: Nicotine-induced the NLRP3 inflammasome activation in podocytes and thereby results in podocyte injury. Methods: Inflammasome formation and immunofluorescence expressions were quantified by confocal microscopy. Caspase-1 activity, IL-1β production and O2.- production were measured by ELISA and ESR.
Collapse
|