1
|
Stayoussef M, Weili X, Habel A, Barbirou M, Bedoui S, Attia A, Omrani Y, Zouari K, Maghrebi H, Almawi WY, Bouhaouala-Zahar B, Larbi A, Yacoubi-Loueslati B. Altered expression of cytokines, chemokines, growth factors, and soluble receptors in patients with colorectal cancer, and correlation with treatment outcome. Cancer Immunol Immunother 2024; 73:169. [PMID: 38954024 PMCID: PMC11219625 DOI: 10.1007/s00262-024-03746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Insofar as they play an important role in the pathogenesis of colorectal cancer (CRC), this study analyzes the serum profile of cytokines, chemokines, growth factors, and soluble receptors in patients with CRC and cancer-free controls as possible CRC signatures. Serum levels of 65 analytes were measured in patients with CRC and age- and sex-matched cancer-free controls using the ProcartaPlex Human Immune Monitoring 65-Plex Panel. Of the 65 tested analytes, 8 cytokines (CSF-3, IFN-γ, IL-12p70, IL-18, IL-20, MIF, TNF-α and TSLP), 8 chemokines (fractalkine, MIP-1β, BLC, Eotaxin-1, Eotaxin-2, IP-10, MIP-1a, MIP-3a), 2 growth factors (FGF-2, MMP-1), and 4 soluble receptors (APRIL, CD30, TNFRII, and TWEAK), were differentially expressed in CRC. ROC analysis confirmed the high association of TNF-α, BLC, Eotaxin-1, APRIL, and Tweak with AUC > 0.70, suggesting theranostic application. The expression of IFN-γ, IL-18, MIF, BLC, Eotaxin-1, Eotaxin-2, IP-10, and MMP1 was lower in metastatic compared to non-metastatic CRC; only AUC of MIF and MIP-1β were > 0.7. Moreover, MDC, IL-7, MIF, IL-21, and TNF-α are positively associated with tolerance to CRC chemotherapy (CT) (AUC > 0.7), whereas IL-31, Fractalkine, Eotaxin-1, and Eotaxin-2 were positively associated with resistance to CT. TNF-α, BLC, Eotaxin-1, APRIL, and Tweak may be used as first-line early detection of CRC. The variable levels of MIF and MIP-1β between metastatic and non-metastatic cases assign prognostic nature to these factors in CRC progression. Regarding tolerance to CT, MDC, IL-7, MIF, IL-21, and TNF-α are key when down-regulated or resistant to treatment is observed.
Collapse
Affiliation(s)
- M Stayoussef
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia.
| | - X Weili
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore, 138648, Singapore
| | - A Habel
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - M Barbirou
- Center for Biomedical Informatics, University of Missouri School of Medicine, Columbia, MO, USA
| | - S Bedoui
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - A Attia
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - Y Omrani
- Laboratory of Biomolecules, Venoms and Theranostic Applications, University of Tunis El Manar (UTM), Pasteur Institute of Tunis, 13 Place Pasteur, B.P. 74, 1002, Tunis, Tunisia
| | - K Zouari
- Department of Digestive Surgery, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - H Maghrebi
- Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - W Y Almawi
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - B Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, University of Tunis El Manar (UTM), Pasteur Institute of Tunis, 13 Place Pasteur, B.P. 74, 1002, Tunis, Tunisia
- University of Tunis El Manar (UTM), Medical School of Tunis, Rue Djebal Lakhdar, 1006, Tunis, Tunisia
| | - A Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore, 138648, Singapore
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - B Yacoubi-Loueslati
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| |
Collapse
|
2
|
Zhang CY, Zhang R, Zhang L, Wang ZM, Sun HZ, Cui ZG, Zheng HC. Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly. World J Gastroenterol 2023; 29:5104-5124. [PMID: 37744296 PMCID: PMC10514755 DOI: 10.3748/wjg.v29.i35.5104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang 110042, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
3
|
Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis. Molecules 2022; 27:molecules27207108. [PMID: 36296703 PMCID: PMC9607578 DOI: 10.3390/molecules27207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Seven styrylquinolines were synthesized in this study. Two of these styrylquinolines are new and were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, and normal cells (HaCaT). According to the results, compounds 3a and 3d showed antiproliferative activity in SW480 and SW620 cells, but their effect seemed to be caused by different mechanisms of action. Compound 3a induced apoptosis independent of ROS production, as evidenced by increased levels of caspase 3, and had an immunomodulatory effect, positively regulating the production of different immunological markers in malignant cell lines. In contrast, compound 3d generated a pro-oxidant response and inhibited the growth of cancer cells, probably by another type of cell death other than apoptosis. Molecular docking studies indicated that the most active compound, 3a, could efficiently bind to the proapoptotic human caspases-3 protein, a result that could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. The obtained results suggest that these compounds have chemopreventive potential against CRC, but more studies should be carried out to elucidate the molecular mechanisms of action of each of them in depth.
Collapse
|