1
|
Al Hakeem WG, Oladeinde A, Li X, Cho S, Kassem II, Rothrock MJ. Campylobacter Diversity Along the Farm-to-Fork Continuum of Pastured Poultry Flocks in the Southeastern United States. Zoonoses Public Health 2025; 72:55-64. [PMID: 39358927 PMCID: PMC11695693 DOI: 10.1111/zph.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Consumer demand for pasture raised, antibiotic-free poultry products has led to an increase in pastured poultry operations within the United States. Given the level of environmental interaction and the potential increase in exposure to foodborne pathogens in these settings, a greater understanding of the prevalence and diversity of Campylobacter populations inherent within pastured poultry flocks is needed. METHODS To achieve this, 40 pastured poultry flocks from nine farms were sampled using a farm-to-fork strategy, and Campylobacter was isolated and characterised from preharvest (faeces, soil) through postharvest (caeca, whole carcass rinse) to the final product the consumer would purchase (whole carcass rinse). RESULTS Campylobacter was isolated from 872 of 1820 samples, showing an overall prevalence of 47.91%. The caeca showed the highest (p < 0.05) Campylobacter load (4.64 log10 CFU/mL) and prevalence (95.5%), while the final product whole carcass rinses had the lowest (p < 0.05) Campylobacter load (0.32 log10 CFU/mL) and prevalence (15.45%), suggesting that the Campylobacter load in the caeca may not be indicative of the Campylobacter load on the final product. Of the 872 positive samples, 337 Campylobacter isolates were selected for further characterisation. Campylobacter jejuni and Campylobacter coli comprised 74.18% (250/337) and 21.95% (74/337) of the selected isolates respectively. While the Campylobacter isolates displayed resistance to several antibiotics, the most common resistance for both C. jejuni and C. coli was against tetracycline (55.86% and 70.31% respectively). Multidrug resistance phenotypes (≥ 3 antibiotic classes) were relatively low for both C. jejuni (2.80%) and C. coli (9.45%). CONCLUSIONS Campylobacter load, prevalence and diversity were more affected by farm location than by the type of sample from which the Campylobacter was isolated. Overall, these results indicated a need for farm-specific Campylobacter mitigation strategies to ensure the safety of these increasingly in-demand poultry products.
Collapse
Affiliation(s)
- Walid G. Al Hakeem
- Egg & Poultry Production Safety Research UnitUSDA‐ARS, US National Poultry Research CenterAthensGeorgiaUSA
- US‐DOEOak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
| | - Adelumola Oladeinde
- Egg & Poultry Production Safety Research UnitUSDA‐ARS, US National Poultry Research CenterAthensGeorgiaUSA
| | - Xiang Li
- Egg & Poultry Production Safety Research UnitUSDA‐ARS, US National Poultry Research CenterAthensGeorgiaUSA
| | - Sohyun Cho
- Egg & Poultry Production Safety Research UnitUSDA‐ARS, US National Poultry Research CenterAthensGeorgiaUSA
| | - Issmat I. Kassem
- Department of Food Science and Technology, Center for Food SafetyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Michael J. Rothrock
- Egg & Poultry Production Safety Research UnitUSDA‐ARS, US National Poultry Research CenterAthensGeorgiaUSA
| |
Collapse
|
2
|
Han Y, Gao YF, Xu HT, Li JP, Li C, Song CL, Lei CW, Chen X, Wang Q, Ma BH, Wang HN. Characterization and risk assessment of novel SXT/R391 integrative and conjugative elements with multidrug resistance in Proteus mirabilis isolated from China, 2018-2020. Microbiol Spectr 2024; 12:e0120923. [PMID: 38197656 PMCID: PMC10871549 DOI: 10.1128/spectrum.01209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/09/2023] [Indexed: 01/11/2024] Open
Abstract
Proteus mirabilis can transfer transposons, insertion sequences, and gene cassettes to the chromosomes of other hosts through SXT/R391 integrative and conjugative elements (ICEs), significantly increasing the possibility of antibiotic resistance gene (ARG) evolution and expanding the risk of ARGs transmission among bacteria. A total of 103 strains of P. mirabilis were isolated from 25 farms in China from 2018 to 2020. The positive detection rate of SXT/R391 ICEs was 25.2% (26/103). All SXT/R391 ICEs positive P. mirabilis exhibited a high level of overall drug resistance. Conjugation experiments showed that all 26 SXT/R391 ICEs could efficiently transfer to Escherichia coli EC600 with a frequency of 2.0 × 10-7 to 6.0 × 10-5. The acquired ARGs, genetic structures, homology relationships, and conservation sequences of 26 (19 different subtypes) SXT/R391 ICEs were investigated by high-throughput sequencing, whole-genome typing, and phylogenetic tree construction. ICEPmiChnHBRJC2 carries erm (42), which have never been found within an SXT/R391 ICE in P. mirabilis, and ICEPmiChnSC1111 carries 19 ARGs, including clinically important cfr, blaCTX-M-65, and aac(6')-Ib-cr, making it the ICE with the most ARGs reported to date. Through genetic stability, growth curve, and competition experiments, it was found that the transconjugant of ICEPmiChnSCNNC12 did not have a significant fitness cost on the recipient bacterium EC600 and may have a higher risk of transmission and dissemination. Although the transconjugant of ICEPmiChnSCSZC20 had a relatively obvious fitness cost on EC600, long-term resistance selection pressure may improve bacterial fitness through compensatory adaptation, providing scientific evidence for risk assessment of horizontal transfer and dissemination of SXT/R391 ICEs in P. mirabilis.IMPORTANCEThe spread of antibiotic resistance genes (ARGs) is a major public health concern. The study investigated the prevalence and genetic diversity of integrative and conjugative elements (ICEs) in Proteus mirabilis, which can transfer ARGs to other hosts. The study found that all of the P. mirabilis strains carrying ICEs exhibited a high level of drug resistance and a higher risk of transmission and dissemination of ARGs. The analysis of novel multidrug-resistant ICEs highlighted the potential for the evolution and spread of novel resistance mechanisms. These findings emphasize the importance of monitoring the spread of ICEs carrying ARGs and the urgent need for effective strategies to combat antibiotic resistance. Understanding the genetic diversity and potential for transmission of ARGs among bacteria is crucial for developing targeted interventions to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Feng Gao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - He-ting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jin-Peng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cai-Liang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chang-Wei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qin Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Bo-Heng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Al Sattar A, Chisty NN, Irin N, Uddin MH, Hasib FMY, Hoque MA. Knowledge and practice of antimicrobial usage and resistance among poultry farmers: A systematic review, meta-analysis, and meta-regression. Vet Res Commun 2023; 47:1047-1066. [PMID: 36823483 DOI: 10.1007/s11259-023-10082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
A systematic review was conducted to summarize and synthesize the existing research on poultry farmers' knowledge, practices, and awareness regarding antimicrobial use (AMU) and antimicrobial resistance (AMR). It was undertaken by systematically searching databases, screening and characterizing relevant studies, extracting data, and evaluating the risk of bias. The outcomes were stratified into several subgroups, and pooled prevalence of each subgroup was calculated using a random-effect meta-analysis. Meta-regression was used for selected outcomes to further investigate the potential sources of heterogeneity across studies. Poultry farmers had knowledge and practice gaps on antimicrobial use. While most (65%; 95% CI: 50%-80%) used antimicrobials on poultry for therapeutic purposes, a portion used them to prevent disease (45%; 95% CI: 34%-55%) or boost growth (29%; 95% CI: 13%-46%) and productivity (20%; 95% CI: 6%-34%). 60% (95% CI: 50%-69%) of farmers approached veterinarians for antimicrobial advice, although many consulted drug sellers and fellow farmers. Insufficient antimicrobial residue knowledge (45%; 95% CI: 29%-62%), as well as inadequate awareness and faulty practice on withdrawal periods, were identified. Only 43% (95% CI: 34%-53%) were knowledgeable about AMR. Around half of farmers understood AMR's impacts on poultry, human health, and the environment. Meta-regression demonstrated that the source of heterogeneity for therapeutic antimicrobial use was the type of poultry farmers sampled and their educational qualifications; geographical region was significantly associated with antimicrobial usage based on farmers' experience; and the country's economic state was correlated with farmers' understanding of antimicrobial residue. This study recommends implementing legislation for judicious antimicrobial use, and farmer awareness campaigns to reinforce knowledge about prudent AMU and AMR.
Collapse
Affiliation(s)
- Abdullah Al Sattar
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Nurun Nahar Chisty
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Nusrat Irin
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Md Helal Uddin
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - F M Yasir Hasib
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Md Ahasanul Hoque
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh.
| |
Collapse
|
4
|
Tigabie M, Biset S, Belachew T, Amare A, Moges F. Multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated from chicken droppings in poultry farms at Gondar City, Northwest Ethiopia. PLoS One 2023; 18:e0287043. [PMID: 37294782 PMCID: PMC10256222 DOI: 10.1371/journal.pone.0287043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/29/2023] [Indexed: 06/11/2023] Open
Abstract
BACKGROUND The poultry sector is one of the largest and fastest-growing agricultural sub-sector, especially in developing countries like Ethiopia. In poultry production, poultry farmers use sub-optimum doses of antibiotics for growth promotion and disease prevention purpose. This indiscriminate use of antibiotics in poultry farms contributes to the emergence of antibiotic-resistant bacteria, which has adverse implications for public health. Therefore, this study is aimed to assess multidrug resistance and extended-spectrum beta-lactamase-producing Enterobacteriaceae from chicken droppings in poultry farms. METHODS A total of 87 pooled chicken-dropping samples were collected from poultry farms from March to June 2022. Samples were transported with buffered peptone water. Selenite F broth was used for the enrichment and isolation of Salmonella spp. Isolates were cultured and identified by using MacConkey agar, Xylose lysine deoxycholate agar, and routine biochemical tests. Kirby-Bauer disk diffusion technique and combination disk test were used for antibiotic susceptibility testing and confirmation of extended-spectrum beta-lactamase production, respectively. Data were entered using Epi-data version 4.6 and then exported to SPSS version 26 for analysis. RESULT Out of 87 pooled chicken droppings, 143 Enterobacteriaceae isolates were identified. Of these, E. coli accounts for 87 (60.8%), followed by Salmonella spp. 23 (16.1%), P. mirabilis 18 (12.6%) and K. pneumoniae 11 (7.7%). A high resistance rate was observed for ampicillin 131 (91.6%), followed by tetracycline 130 (90.9), and trimethoprim-sulfamethoxazole 94 (65.7%). The overall multidrug resistance rate was 116/143 (81.1%; 95% CI: 74.7-87.5). A total of 12/143 (8.4%; CI: 3.9-12.9) isolates were extended-spectrum beta-lactamase producers, with 11/87 (12.6%) E. coli and 1/11 (9.1%) K. pneumoniae. CONCLUSION AND RECOMMENDATIONS High prevalence of multi-drug resistant isolates was observed. This study alarms poultry as a potential reservoir of extended-spectrum beta-lactamase-producing Enterobacteriaceae, which might shed and contaminate the environment through faecal matter. Prudent use of antibiotics should be implemented to manage antibiotic resistance in poultry production.
Collapse
Affiliation(s)
- Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Sirak Biset
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Jia Y, Mao W, Liu B, Zhang S, Cao J, Xu X. Study on the drug resistance and pathogenicity of Escherichia coli isolated from calf diarrhea and the distribution of virulence genes and antimicrobial resistance genes. Front Microbiol 2022; 13:992111. [PMID: 36620061 PMCID: PMC9815963 DOI: 10.3389/fmicb.2022.992111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The unscientific and irrational use of antimicrobial drugs in dairy farms has led to the emergence of more serious drug resistance in Escherichia coli. Methods In this study, cases of calf diarrhea in cattle farms around the Hohhot area were studied, and Escherichia coli were identified by PCR and biochemical methods, while the distribution of virulence and drug resistance genes of the isolates was analyzed. Results The results showed that 21 strains of Escherichia coli were isolated from the diseased materials, and the isolation rate was 60%. The isolated strains belong to 15 ST types. The drug resistance levels of the isolated strains to 20 kinds of antimicrobial agent viz., penicillin, ampicillin, cefotaxime, cefepime, cefoxitin, and ceftriaxone were more than 50%. The resistance rate to meropenem was 10%. The resistance rates to tetracycline and doxycycline were 33% and 29%, to ciprofloxacin, levofloxacin and enrofloxacin were 48%, 33%, and 33%, to amikacin, kanamycin and gentamicin were 19%, 24% and 38%, to cotrimoxazole and erythromycin were 48% and 15%, to florfenicol, chloramphenicol and polymyxin B were 29%, 33%, and 5%. Nine strains of pathogenic calf diarrhea Escherichia coli were isolated by mouse pathogenicity test. The detection rates of virulence genes for the adhesion class were fimC (95%), IuxS (95%), eaeA (76%), fimA (62%), ompA (52%), and flu (24%). The detection rates for iron transporter protein like virulence genes were iroN (33%), iutA (19%), fyuA (14%), irp5 (9.5%), Iss (9.5%), and iucD (9.5%). The detection rates for toxin-like virulence genes were phoA (90%), Ecs3703 (57%), ropS (33%), hlyF (14%), and F17 (9.5%). The detection rates of tetracycline resistance genes in isolated strains were tetB (29%), tetA (19%) and tetD (14%). The detection rates for fluoroquinolone resistance genes were parC (Y305H, P333S, R355G) (9.5%), gyrA (S83L, D87N) (28%), qnrD (43%), and qnrS (9.5%). The detection rates for β-lactam resistance genes were bla CTX-M (29%), bla TEM (29%), and bla SHV (9.5%). The detection rates for aminoglycoside resistance genes were strA-B (57%), aacC (33%), aac(3')-IIa (29%), and aadAI (24%). The detection rates of chloramphenicol resistance genes floR and sulfa resistance genes sul2 were 24 and 33%. Conclusion Pathogenic Escherichia coli causing diarrhea in calves contain abundant virulence genes and antibiotic resistance genes.
Collapse
Affiliation(s)
- Yan Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Hohhot, China,Xuzhou Vocational College of Bioengineering, Xuzhou, Jiangsu, China
| | - Wei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Hohhot, China
| | - Bo Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Hohhot, China
| | - Shuangyi Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Hohhot, China
| | - Jinshan Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Hohhot, China,Jinshan Cao,
| | - Xiaojing Xu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Xiaojing Xu,
| |
Collapse
|
6
|
Qu X, Zhou J, Huang H, Wang W, Xiao Y, Tang B, Liu H, Xu C, Xiao X. Genomic Investigation of Proteus mirabilis Isolates Recovered From Pig Farms in Zhejiang Province, China. Front Microbiol 2022; 13:952982. [PMID: 35875581 PMCID: PMC9300985 DOI: 10.3389/fmicb.2022.952982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Proteus mirabilis is a common opportunistic zoonotic pathogen, and its ongoing acquisition of antimicrobial resistance genes poses challenges to clinical treatments. Human-sourced whole genomic sequencing of human P. mirabilis isolates has been reported, but pig-sourced isolates have not been thoroughly investigated even though these animals can serve as reservoirs for human infections. In the current study, we report a molecular epidemiological investigation to unravel the antimicrobial and virulence gene risk factors for P. mirabilis contamination in 9 pig farms in 3 different cities in Zhejiang Province, China. We collected 541 swab samples from healthy pigs and 30 were confirmed as P. mirabilis. All 30 isolates were resistant to tetracyclines, macrolides, sulfonamides, β-lactams and chloramphenicol, and all were multiple drug-resistant and 27 were strong biofilm formers. Phylogenetic analyses indicated these 30 isolates clustered together in 2 major groups. Whole genome sequencing demonstrated that the isolates possessed 91 different antimicrobial resistance genes belonging to 30 antimicrobial classes including rmtB, sul1, qnrS1, AAC(6′) − Ib − cr, blaCTX − M − 65 and blaOXA − 1. All isolates contained mobile genetic elements including integrative conjugative elements (ICEs) and integrative and mobilizable elements (IMEs). Minimum inhibitory concentration (MIC) testing indicated direct correlates between cognate genes and antimicrobial resistance. We also identified 95 virulence factors, almost all isolates contained 20 fimbrial and flagellar operons, and this represents the greatest number of these operon types found in a single species among all sequenced bacterial genomes. These genes regulate biofilm formation and represent a confounding variable for treating P. mirabilis infections. Our P. mirabilis isolates were present in healthy animals, and multiple drug resistance in these isolates may serve as a reservoir for other intestinal and environmental Enterobacteriaceae members. This prompts us to more strictly regulate veterinary antibiotic use.
Collapse
Affiliation(s)
- Xiaoyun Qu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haoqi Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanlin Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenggang Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Chenggang Xu,
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xingning Xiao,
| |
Collapse
|
7
|
Geta K, Kibret M. Antibiotic Resistance Profiles of Bacteria Isolated from Hotspot Environments in Bahir Dar City, Northwestern Ethiopia. J Multidiscip Healthc 2022; 15:1403-1414. [PMID: 35785260 PMCID: PMC9242431 DOI: 10.2147/jmdh.s364324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Wastes generated from hotspot environments contain a wide range of antibiotics and pathogens that play a significant role in the dissemination of antibiotic-resistant bacteria in the environment. This study was carried out to isolate bacteria from hotspot environments and determine their resistance profiles to commonly used antibiotics in Bahir Dar city, Ethiopia. Methods A cross-sectional study was conducted from October 2020 to June 2021 in Bahir Dar City. A total of 126 waste and wastewater samples were aseptically collected, transported, and processed for bacteriological isolation and susceptibility testing following standard procedures. Results A total of 411 bacterial isolates were recovered and the highest value of 122 (29.7%) bacterial isolates were obtained from medical wastewater samples, and the most frequently isolated bacteria were assigned to the species Escherichia coli with 82 strains (19.5%). The results revealed that the highest resistance profile of 69 (95.8%) was obtained in Staphylococcus aureus against ampicillin and 46 (86.8%) Citrobacter spp. against tetracycline. Two hundred and sixteen (52.6%) of bacteria showed multi-drug resistance and the highest multi-drug resistance was observed in Pseudomonas spp. 47 (65.3%), followed by Escherichia coli 51 (62.2%). The highest resistance profile of 12 (85.7%) and 60 (74.1%) for tetracycline were obtained from beef waste and wastewater and medical wastewater samples. The highest multi-drug resistance was recorded in isolates isolated from beef waste and wastewater samples 11 (64.7%), followed by medical wastewater samples 84 (64.1%). Even though a higher (>0.2) multi-antibiotic resistance index was found in all hotspot environments, the highest multi-antibiotic resistance index (0.477) was recorded in bacteria isolated from medical wastewater. Conclusion It was concluded that wastes generated from hotspot environments and released in the environment contain large numbers of antibiotic-resistant, multidrug, extensively, and pan-drug-resistant bacteria. Proper waste management strategies should be established.
Collapse
Affiliation(s)
- Kindu Geta
- Department of Biology, Debre Tabor University, Debre Tabor, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mulugeta Kibret
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
8
|
Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H, El-Tarabili RM. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep 2021; 11:9476. [PMID: 33947875 PMCID: PMC8096940 DOI: 10.1038/s41598-021-88861-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Proteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Hany R. Hashem
- grid.411170.20000 0004 0412 4537Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514 Egypt
| | - Khyreyah J. Alfifi
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Science, Tabuk University, Tabuk, 7149 Saudi Arabia
| | - Helal F. Hetta
- grid.252487.e0000 0000 8632 679XDepartment of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515 Egypt
| | - Norhan S. Sheraba
- grid.463319.aVACSERA, the Holding Company for Biological Products and Vaccines, Giza, 12511 Egypt
| | - Hazem Ramadan
- grid.10251.370000000103426662Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Reham M. El-Tarabili
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| |
Collapse
|
9
|
Molecular Epidemiology of Antibiotic-Resistant Escherichia coli from Farm-To-Fork in Intensive Poultry Production in KwaZulu-Natal, South Africa. Antibiotics (Basel) 2020; 9:antibiotics9120850. [PMID: 33260950 PMCID: PMC7761107 DOI: 10.3390/antibiotics9120850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
The increased use of antibiotics in food animals has resulted in the selection of drug-resistant bacteria across the farm-to-fork continuum. This study aimed to investigate the molecular epidemiology of antibiotic-resistant Escherichia coli from intensively produced poultry in the uMgungundlovu District, KwaZulu-Natal, South Africa. Samples were collected weekly between August and September 2017 from hatching to final retail products. E. coli was isolated on eosin methylene blue agar, identified biochemically, and confirmed using polymerase chain reaction (PCR). Susceptibility to 19 antibiotics was ascertained by the Kirby–Bauer disc diffusion method. PCR was used to test for resistance genes. The clonal similarity was investigated using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). In total, 266 E. coli isolates were obtained from all the samples, with 67.3% being non-susceptible to at least one antibiotic tested and 6.7% multidrug resistant. The highest non-susceptibility was to ampicillin (48.1%) and the lowest non-susceptibility to ceftriaxone and azithromycin (0.8%). Significant non-susceptibility was observed to tetracycline (27.4%), nalidixic acid (20.3%), trimethoprim-sulfamethoxazole (13.9%), and chloramphenicol (11.7%) which have homologues used in the poultry industry. The most frequently observed resistance genes were blaCTX-M (100%), sul1 (80%), tetA (77%), and tetB (71%). ERIC-PCR grouped isolates into 27 clusters suggesting the spread of diverse clones across the farm-to-fork continuum. This reiterates the role of intensive poultry farming as a reservoir and a potential vehicle for the transmission of antibiotic resistance, with potentially severe public health implications, thus, requiring prompt and careful mitigation measures to protect human and environmental health.
Collapse
|
10
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Molecular characterization of antimicrobial resistance and enterobacterial repetitive intergenic consensus-PCR as a molecular typing tool for Salmonella spp. isolated from poultry and humans. Vet World 2020; 13:1771-1779. [PMID: 33132588 PMCID: PMC7566269 DOI: 10.14202/vetworld.2020.1771-1779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background and Aim: Salmonella spp. are one of the most important food-borne pathogens in the world, emerging as a major public health concern. Moreover, multidrug-resistant (MDR) strains have been isolated from salmonellosis outbreaks, which compromise its treatment success. This study was conducted to characterize the phenotypic and genotypic antibiotic resistance profile of Salmonella strains isolated from broilers and humans from the regions of Tolima and Santander (Colombia). Materials and Methods: Salmonella spp. strains (n=49) were confirmed through molecular detection by amplification of the invA gene. Phenotypic antibiotic resistance was determined by the automated method and the agar diffusion method, and the presence of resistance genes was evaluated by PCR. Genotypic characterization was conducted using the enterobacterial repetitive intergenic consensus (ERIC)-PCR method, from which a dendrogram was generated and the possible phylogenetic relationships were established. Results: Salmonella isolates were classified as MDR strains exhibiting resistance to four antibiotic classes, penicillins, aminoglycosides, sulfonamides, and cephalosporins, and the human strains were resistant to gentamicin. At the genotypic level, the isolates contained the genes blaCMY2, blaCTX-M, blaPSE-1, blaTEM, aadA1, srtB, dfrA1, sul2, and floR. The genotyping results obtained by ERIC-PCR allowed the grouping of strains according to the source of isolation. Conclusion: The Salmonella spp. strains exhibited resistance to multiple antibiotics, as well as multiple genes associated with them, and the ERIC-PCR method was a technique that was helpful in generating clusters with biological significance.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Research Group in Immunology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia.,Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
11
|
|
12
|
Resistance to tetracycline in Escherichia coli isolates from poultry meat: epidemiology, policy and perspective. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933917000216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Sharma P, Gupta SK, Adenipekun EO, Barrett JB, Hiott LM, Woodley TA, Iwalokun BA, Oluwadun A, Ramadan HH, Frye JG, Jackson CR. Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria. Foodborne Pathog Dis 2019; 17:1-7. [PMID: 31509034 DOI: 10.1089/fpd.2019.2659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, blaCTX-M15 and blaTEM-1, whereas one isolate harbored an additional ESBL, blaOXA-1. All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli.
Collapse
Affiliation(s)
- Poonam Sharma
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Eyitayo O Adenipekun
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - John B Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Lari M Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Tiffanie A Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Bamidele A Iwalokun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria.,Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Afolabi Oluwadun
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Olabisi Onabanjo University, Sagamu, Nigeria
| | - Hazem H Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, Georgia
| |
Collapse
|
14
|
Oloso NO, Fagbo S, Garbati M, Olonitola SO, Awosanya EJ, Aworh MK, Adamu H, Odetokun IA, Fasina FO. Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:1284. [PMID: 29914203 PMCID: PMC6025306 DOI: 10.3390/ijerph15061284] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, which has elicited a high-level political declaration at the United Nations General Assembly, 2016. In response, member countries agreed to pay greater attention to the surveillance and implementation of antimicrobial stewardship. The Nigeria Centre for Disease Control called for a review of AMR in Nigeria using a “One Health approach”. As anecdotal evidence suggests that food animal health and production rely heavily on antimicrobials, it becomes imperative to understand AMR trends in food animals and the environment. We reviewed previous studies to curate data and evaluate the contributions of food animals and the environment (2000⁻2016) to the AMR burden in Nigeria using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart focused on three areas: Antimicrobial resistance, residues, and antiseptics studies. Only one of the 48 antimicrobial studies did not report multidrug resistance. At least 18 bacterial spp. were found to be resistant to various locally available antimicrobials. All 16 residue studies reported high levels of drug residues either in the form of prevalence or concentration above the recommended international limit. Fourteen different “resistotypes” were found in some commonly used antiseptics. High levels of residues and AMR were found in food animals destined for the human food chain. High levels of residues and antimicrobials discharged into environments sustain the AMR pool. These had evolved into potential public health challenges that need attention. These findings constitute public health threats for Nigeria’s teeming population and require attention.
Collapse
Affiliation(s)
- Nurudeen Olalekan Oloso
- Department of Production Animal Studies (Epidemiology section), Faculty of Veterinary Science, Onderstepoort Campus 0110, University of Pretoria, 0110, South Africa.
| | - Shamsudeen Fagbo
- Public Health Agency, Ministry of Health, Riyadh, 11176, Saudi Arabia.
| | - Musa Garbati
- Department of Medicine, Infectious Diseases and Immunology Unit, University of Maiduguri, PMB 1069, Maiduguri 600230, Borno State, Nigeria.
| | - Steve O Olonitola
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810241, Nigeria.
| | - Emmanuel Jolaoluwa Awosanya
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan 200284, Nigeria.
| | - Mabel Kamweli Aworh
- Veterinary Drugs/Animal Welfare Branch, Quality Assurance and Standards Division, Department of Veterinary & Pests Control Services, Federal Min. of Agric. & Rural Dev. F.C.D.A, Area 11, Garki, Abuja 900001, Nigeria.
| | - Helen Adamu
- Center for Clinical Care and Clinical Research, Plot 784, By Glimor Engineering, Off Life camp, Gwarimpa Express Way, Jabi, Abuja 240102, Nigeria.
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin 240272, Kwara State, Nigeria.
| | - Folorunso Oludayo Fasina
- Department of Production Animal Studies (Epidemiology section), Faculty of Veterinary Science, Onderstepoort Campus 0110, University of Pretoria, 0110, South Africa.
- Emergency Centre for Transboundary Diseases (ECTAD-FAO), Food and Agricultural Organization of the United Nation, Dar es Salaam 0701072, Tanzania.
| |
Collapse
|
15
|
Alhaji NB, Haruna AE, Muhammad B, Lawan MK, Isola TO. Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Prev Vet Med 2018; 154:139-147. [PMID: 29685438 DOI: 10.1016/j.prevetmed.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
The World Health Organization's Global Action Plan on antimicrobial resistance (AMR) recommended monitoring of antimicrobial use (AMU) through surveillance and research to help mitigate AMR. This survey was aimed at assessing poultry owners' knowledge/awareness and practices regarding AMU, identified pathways for AMR emergence and spread in small-scale commercial poultry farms and free-range local bird flocks in North-central Nigeria. An interview questionnaire-based cross-sectional study was conducted on commercial poultry farmers and local bird flock keepers in 2017. Also, a Traffic Light system model was used assess risk status of AMU in farms and flocks. All the 384 recruited poultry farmers/keepers participated in the survey. Female respondents were the majority (67.2%). Low proportion of poultry farmers (46.4%, 89/192) and very low proportion of bird keepers (6.8%, 13/192) knew antimicrobials misuse to be when administered under dose. About 48% (93/192) of farmers and 93% (179/192) of keepers arbitrary determined antimicrobial dosage before administration. Respondents used antimicrobials for therapeutic, prophylactic, and growth promotion in birds. Also, participants significantly identified contaminated poultry products, infected poultry or contaminated formites, and discharged contaminated faeces into environment as pathways for transmission of antimicrobial resistant pathogens to humans. Traffic Light system model revealed 88.5% of small-scale commercial poultry farms to frequently used antimicrobials without veterinarians' consultations thereby attaining Class 1 (Red risk) status. The model showed that 92.1% of free-range local bird flocks rarely used antimicrobials thereby attaining Class 3 (Green risk) status. Improper antimicrobial dosage in poultry (OR: 7.23; 95% CI: 2.74, 19.21), non-enforcement of AMU regulating laws in poultry (OR: 4.12; 95% CI: 2.39, 7.10), weak financial status of poultry owners (OR: 3.00; 95% CI: 2.39, 7.10), and management system (OR: 8.94; 95% CI: 5.62, 14.24) were more likely to satisfactorily influenced antimicrobials misuse in poultry farms and local bird flocks. The survey revealed low knowledge level regarding AMU in the poultry. Antimicrobials were rarely used in local bird flocks, making them likely organic and safe from AMR. It is imperative to educate farmers on judicious AMU, enforce existing veterinary legislation on antimicrobials, establish antimicrobials surveillance system, and sensitize farmers on adequate biosecurity measures and routine vaccination of farms, so as to assure food safety, food security, and public health.
Collapse
Affiliation(s)
- N B Alhaji
- Department of Public Health and Epidemiology, Niger State Ministry of Livestock and Fisheries, Minna, Nigeria.
| | - A E Haruna
- Department of Public Health and Epidemiology, Niger State Ministry of Livestock and Fisheries, Minna, Nigeria
| | - B Muhammad
- Department of Public Health and Epidemiology, Niger State Ministry of Livestock and Fisheries, Minna, Nigeria
| | - M K Lawan
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - T O Isola
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Yeh HY, Line JE, Hinton A. Molecular Analysis, Biochemical Characterization, Antimicrobial Activity, and Immunological Analysis of Proteus mirabilis
Isolated from Broilers. J Food Sci 2018; 83:770-779. [DOI: 10.1111/1750-3841.14056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Hung-Yueh Yeh
- Poultry Microbiological Safety and Processing Research Unit, U.S. Natl. Poultry Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; 950 College Station Road Athens GA 30605-2720 U.S.A
| | - John E. Line
- Poultry Microbiological Safety and Processing Research Unit, U.S. Natl. Poultry Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; 950 College Station Road Athens GA 30605-2720 U.S.A
| | - Arthur Hinton
- Poultry Microbiological Safety and Processing Research Unit, U.S. Natl. Poultry Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; 950 College Station Road Athens GA 30605-2720 U.S.A
| |
Collapse
|
17
|
Curi LM, Peltzer PM, Martinuzzi C, Attademo MA, Seib S, Simoniello MF, Lajmanovich RC. Altered development, oxidative stress and DNA damage in Leptodactylus chaquensis (Anura: Leptodactylidae) larvae exposed to poultry litter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:62-71. [PMID: 28505481 DOI: 10.1016/j.ecoenv.2017.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Poultry litter (PL), which is usually used as organic fertilizer, is a source of nutrients, metals, veterinary pharmaceuticals and bacterial pathogens, which, through runoff, may end up in the nearest aquatic ecosystems. In this study, Leptodactylus chaquensis at different development stages (eggs, larval stages 28 and 31 here referred to as stages I, II and III respectively) were exposed to PL test sediments as follows: 6.25% (T1), 12.5% (T2); 25% (T3); 50% (T4); 75% (T5); 100% PL (T6) and to dechlorinated water as control. Larval survival, development endpoints (growth rate -GR-, development rate -DR-, abnormalities), antioxidant enzyme activities (Catalase -CAT- and Glutathione-S-Transferase -GST-), and genotoxic effect (DNA damage index by the Comet assay) were analyzed at different times. In stage I, no egg eclosion was observed in treatments T3-T6, and 50% of embryo mortality was recorded after 24h of exposure to T2. In stages II and III, mortality in treatments T3-T6 reached 100% between 24 and 48h. In the three development stages evaluated, the DR and GR were higher in controls than in PL treatments (T1, T2), except for those T1-treated larvae of stage II. Larvae of stage I showed five types of morphological abnormalities, being diamond body shape and lateral displacement of the intestine the most prevalent in T1, whereas larvae of stages II and III presented lower prevalence of abnormalities. In stage I, CAT activity was similar to that of control (p>0.05), whereas it was higher in T1- and T2- treated larvae of stages II and III than controls (p<0.05). In stages I and III, GST activity was similar to that of controls (p>0.05), whereas it was inhibited in T1-treated larvae of stage II (p<0.05). T1- and T2-treated larvae of stages II and III caused higher DNA damage respect to controls (p<0.05), varying from medium to severe damage (comet types II, III and IV). These results showed that PL treatments altered development and growth and induced oxidative stress and DNA damage, resulting ecotoxic for L. chaquensis larvae.
Collapse
Affiliation(s)
- L M Curi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - P M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - C Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M A Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S Seib
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal. Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - R C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Computed tomographic precision rate-of-passage assay without a fasting period in broilers: More precise foundation for targeting the releasing time of encapsulated products. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop Anim Health Prod 2016; 49:451-458. [PMID: 27987112 DOI: 10.1007/s11250-016-1212-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
This study investigated the occurrence, antimicrobial resistance and virulence of Enterococcus from poultry and cattle farms. Three hundred and ninety samples: cloacal/rectal swabs (n = 260) and manure (n = 130] were processed for recovery of Enterococcus species. Standard bacteriological methods were used to isolate, identify and characterize Enterococcus species for antimicrobial susceptibility and expression of virulence traits. Detection of antibiotic resistance and virulence genes was carried out by polymerase chain reaction. Enterococcus was recovered from 167 (42.8%) of the 390 samples tested with a predominance of Enterococcus faecium (27.7%). Other species detected were Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus raffinosus, Enterococcus avium, Enterococcus casseliflavus, Enterococcus mundtii and Enterococcus durans. All the isolates tested were susceptible to vancomycin, but resistance to tetracycline, erythromycin, ampicillin and gentamicin was also observed among 61.0, 61.0, 45.1 and 32.7% of the isolates, respectively. Sixty (53.1%) of the isolates were multidrug resistant presenting as 24 different resistance patterns with resistance to gentamicin-erythromycin-streptomycin-tetracycline (CN-ERY-STR-TET) being the most common (n = 11) pattern. In addition to expression of virulence traits (haemolysin, gelatinase, biofilm production), antibiotic resistance (tetK, tetL, tetM, tetO and ermB) and virulence (asa1, gelE, cylA) genes were detected among the isolates. Also, in vitro transfer of resistance determinants was observed among 75% of the isolates tested. Our data revealed poultry, cattle and manure in this area are hosts to varying Enterococcus species harbouring virulence and resistance determinants that can be transferred to other organisms and also are important for causing nosocomial infection.
Collapse
Affiliation(s)
- Emmanuel Ochefije Ngbede
- Department of Veterinary Pathology & Microbiology, University of Agriculture Makurdi, PMB 2373, Makurdi, Benue State, Nigeria. .,Department of Veterinary Microbiology, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria.
| | - Mashood Abiola Raji
- Department of Veterinary Microbiology, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria.,Department of Veterinary Microbiology, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
| | - Clara Nna Kwanashie
- Department of Veterinary Microbiology, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria
| | - Jacob Kwada Pajhi Kwaga
- Department of Veterinary Public Health & Preventive Medicine, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria
| |
Collapse
|