1
|
Correia Carreira G, Projahn M, Langkabel N, Becker E, Käsbohrer A. Modeling of interventions for reducing external Enterobacteriaceae contamination of broiler carcasses during processing. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1933-1945. [PMID: 36577911 DOI: 10.1111/risa.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
This article presents a mathematical model for the Enterobacteriaceae count on the surface of broiler chicken during slaughter and how it may be affected by different processing technologies. The model is based on a model originally developed for Campylobacter and has been adapted for Enterobacteriaceae using a Bayesian updating approach and hitherto unpublished data gathered from German abattoirs. The slaughter process in the model consists of five stages: input, scalding, defeathering, evisceration, washing, and chilling. The impact of various processing technologies along the broiler processing line on the Enterobacteriaceae count on the carcasses' surface has been determined from literature data. The model is implemented in the software R and equipped with a graphical user interface which allows interactively to choose among different processing technologies for each stage along the processing line. Based on the choice of processing technologies the model estimates the Enterobacteriaceae count on the surface of each broiler chicken at each stage of processing. This result is then compared to a so-called baseline model which simulates a processing line with a fixed set of processing technologies. The model calculations showed how even very effective removal of bacteria on the exterior of the carcass in a previous step will be undone by the cross-contamination with leaked feces, if feces contain high concentrations of bacteria.
Collapse
Affiliation(s)
| | - Michaela Projahn
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Nina Langkabel
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Evelyne Becker
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
2
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
3
|
Molecular Targets in Campylobacter Infections. Biomolecules 2023; 13:biom13030409. [PMID: 36979344 PMCID: PMC10046527 DOI: 10.3390/biom13030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Human campylobacteriosis results from foodborne infections with Campylobacter bacteria such as Campylobacter jejuni and Campylobacter coli, and represents a leading cause of bacterial gastroenteritis worldwide. After consumption of contaminated poultry meat, constituting the major source of pathogenic transfer to humans, infected patients develop abdominal pain and diarrhea. Post-infectious disorders following acute enteritis may occur and affect the nervous system, the joints or the intestines. Immunocompromising comorbidities in infected patients favor bacteremia, leading to vascular inflammation and septicemia. Prevention of human infection is achieved by hygiene measures focusing on the reduction of pathogenic food contamination. Molecular targets for the treatment and prevention of campylobacteriosis include bacterial pathogenicity and virulence factors involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. This repertoire of intervention measures has recently been completed by drugs dampening the pro-inflammatory immune responses induced by the Campylobacter endotoxin lipo-oligosaccharide. Novel pharmaceutical strategies will combine anti-pathogenic and anti-inflammatory effects to reduce the risk of both anti-microbial resistance and post-infectious sequelae of acute enteritis. Novel strategies and actual trends in the combat of Campylobacter infections are presented in this review, alongside molecular targets applied for prevention and treatment strategies.
Collapse
|
4
|
A new disinfectant technique for Campylobacter jejuni and spoilage bacteria on chicken skin using a high-pressure pulsed jet spray apparatus. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Alter T, Reich F. Management Strategies for Prevention of Campylobacter Infections Through the Poultry Food Chain: A European Perspective. Curr Top Microbiol Immunol 2021; 431:79-102. [PMID: 33620649 DOI: 10.1007/978-3-030-65481-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Numerous studies point out that at present, a complete elimination of Campylobacter species in the poultry food chain is not feasible. Thus, the current aim should be to establish control measures and intervention strategies to minimize the occurrence of Campylobacter spp. in livestock (esp. poultry flocks) and to reduce the quantitative Campylobacter burden along the food chain in animals and subsequently in foods. The most effective measures to mitigate Campylobacter focus on the primary production stage. Nevertheless, measures applied during slaughter and processing complement the general meat hygiene approaches by reducing fecal contamination during slaughtering and processing and as a consequence help to reduce Campylobacter in poultry meat. Such intervention measures at slaughter and processing level would include general hygienic improvements, technological innovations and/or decontamination measures that are applied at single slaughter or processing steps. In particular, approaches that do not focus on a single intervention measure would need to be based on a thorough process of evaluation, and potential combinatory effects have to be modeled and tested. Finally, the education of all stakeholders (including retailers, food handlers and consumers) is required and will help to increase awareness for the presence of foodborne pathogens in raw meat and meat products and can thus aid in the development of the required good kitchen hygiene.
Collapse
Affiliation(s)
- Thomas Alter
- Center for Veterinary Public Health, Institute of Food Safety and Food Hygiene, Free University Berlin, Koenigsweg 69, Berlin, 14163, Germany.
| | - Felix Reich
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| |
Collapse
|
6
|
Lu T, Marmion M, Ferone M, Wall P, Scannell AGM. Processing and retail strategies to minimizeCampylobactercontamination in retail chicken. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ting Lu
- School of Public Health, Physiotherapy and Sports Science University College Dublin, National University of Ireland Dublin Ireland
- Center for Food Safety University College Dublin, National University of Ireland Dublin Ireland
| | - Matthew Marmion
- School of Agriculture and Food Science, Agricultural & Food Science Centre University College Dublin, National University of Ireland Dublin Ireland
| | - Mariateresa Ferone
- School of Agriculture and Food Science, Agricultural & Food Science Centre University College Dublin, National University of Ireland Dublin Ireland
| | - Patrick Wall
- School of Public Health, Physiotherapy and Sports Science University College Dublin, National University of Ireland Dublin Ireland
- Center for Food Safety University College Dublin, National University of Ireland Dublin Ireland
- Institute of Food and Health, O'Brien Science Centre South University College Dublin, National University of Ireland Dublin Ireland
| | - Amalia G. M. Scannell
- Center for Food Safety University College Dublin, National University of Ireland Dublin Ireland
- School of Agriculture and Food Science, Agricultural & Food Science Centre University College Dublin, National University of Ireland Dublin Ireland
- Institute of Food and Health, O'Brien Science Centre South University College Dublin, National University of Ireland Dublin Ireland
| |
Collapse
|
7
|
Projahn M, Pacholewicz E, Becker E, Correia-Carreira G, Bandick N, Kaesbohrer A. Reviewing Interventions against Enterobacteriaceae in Broiler Processing: Using Old Techniques for Meeting the New Challenges of ESBL E. coli? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7309346. [PMID: 30426012 PMCID: PMC6218796 DOI: 10.1155/2018/7309346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Extended-spectrum beta-lactamase- (ESBL-) producing Enterobacteriaceae are frequently detected in poultry and fresh chicken meat. Due to the high prevalence, an impact on human colonization and the spread of antibiotic resistance into the environment is assumed. ESBL-producing Enterobacteriaceae can be transmitted along the broiler production chain but also their persistence is reported because of insufficient cleaning and disinfection. Processing of broiler chickens leads to a reduction of microbiological counts on the carcasses. However, processing steps like scalding, defeathering, and evisceration are critical concerning fecal contamination and, therefore, cross-contamination with bacterial strains. Respective intervention measures along the slaughter processing line aim at reducing the microbiological load on broiler carcasses as well as preventing cross-contamination. Published data on the impact of possible intervention measures against ESBL-producing Enterobacteriaceae are missing and, therefore, we focused on processing measures concerning Enterobacteriaceae, in particular E. coli or coliform counts, during processing of broiler chickens to identify possible hints for effective strategies to reduce these resistant bacteria. In total, 73 publications were analyzed and data on the quantitative reductions were extracted. Most investigations concentrated on scalding, postdefeathering washes, and improvements in the chilling process and were already published in and before 2008 (n=42, 58%). Therefore, certain measures may be already installed in slaughterhouse facilities today. The effect on eliminating ESBL-producing Enterobacteriaceae is questionable as there are still positive chicken meat samples found. A huge number of studies dealt with different applications of chlorine substances which are not approved in the European Union and the reduction level did not exceed 3 log10 values. None of the measures was able to totally eradicate Enterobacteriaceae from the broiler carcasses indicating the need to develop intervention measures to prevent contamination with ESBL-producing Enterobacteriaceae and, therefore, the exposure of humans and the further release of antibiotic resistances into the environment.
Collapse
Affiliation(s)
- Michaela Projahn
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Ewa Pacholewicz
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Evelyne Becker
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Guido Correia-Carreira
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Annemarie Kaesbohrer
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany
| |
Collapse
|
8
|
de Camargo AC, Regitano-d'Arce MAB, Rasera GB, Canniatti-Brazaca SG, do Prado-Silva L, Alvarenga VO, Sant'Ana AS, Shahidi F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem 2017; 237:538-544. [PMID: 28764032 DOI: 10.1016/j.foodchem.2017.05.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/15/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
Abstract
Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MSn. Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Gabriela Boscariol Rasera
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Solange Guidolin Canniatti-Brazaca
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Leonardo do Prado-Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Verônica Ortiz Alvarenga
- Department of Food Science, Faculty of Food Engineering, University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas - UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP CEP 13083-862, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|