1
|
Greene ES, Ramser A, Wideman R, Bedford M, Dridi S. Dietary inclusion of phytase and stimbiotic decreases mortality and lameness in a wire ramp challenge model in broilers. Avian Pathol 2024; 53:474-491. [PMID: 38776101 DOI: 10.1080/03079457.2024.2359592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Wire ramp model reproducibly induced lameness/BCO in broilers.Treatments did not affect growth, but phytase with stimbiotic significantly reduced BCO.Phytase increased circulating inositol, and wire flooring decreased bone inositol.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Alison Ramser
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | - Robert Wideman
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, Arkansas, USA
| |
Collapse
|
2
|
Moita VHC, Kim SW. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals (Basel) 2022; 12:3322. [PMID: 36496844 PMCID: PMC9740087 DOI: 10.3390/ani12233322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
This review paper discussed the nutritional and functional roles of phytase and xylanase enhancing the intestinal and growth of nursery pigs and broiler chickens. There are different feed enzymes that are currently supplemented to feeds for nursery pigs and broiler chickens. Phytase and xylanase have been extensively studied showing consistent results especially related to enhancement of nutrient digestibility and growth performance of nursery pigs and broiler chickens. Findings from recent studies raise the hypothesis that phytase and xylanase could play functional roles beyond increasing nutrient digestibility, but also enhancing the intestinal health and positively modulating the intestinal microbiota of nursery pigs and broiler chickens. In conclusion, the supplementation of phytase and xylanase for nursery pigs and broiler chickens reaffirmed the benefits related to enhancement of nutrient digestibility and growth performance, whilst also playing functional roles benefiting the intestinal microbiota and reducing the intestinal oxidative damages. As a result, it could contribute to a reduction in the feed costs by allowing the use of a wider range of feedstuffs without compromising the optimal performance of the animals, as well as the environmental concerns associated with a poor hydrolysis of antinutritional factors present in the diets for swine and poultry.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals (Basel) 2022; 12:ani12091082. [PMID: 35565509 PMCID: PMC9101957 DOI: 10.3390/ani12091082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Camelina sativa, belonging to the Brassicaceae family, has been grown since 4000 B.C. as an oilseed crop that is more drought- and cold-resistant. Increased demand for its oil, meal, and other derivatives has increased researchers’ interest in this crop. Its anti-nutritional factors can be reduced by solvent, enzyme and heat treatments, and genetic engineering. Inclusion of camelina by-products increases branched-chain volatile fatty acids, decreases neutral detergent fiber digestibility, has no effect on acid detergent fiber digestibility, and lowers acetate levels in dairy cows. Feeding camelina meal reduces ruminal methane, an environmental benefit of using camelina by-products in ruminant diets. The addition of camelina to dairy cow diets decreases ruminal cellulolytic bacteria and bio-hydrogenation. This reduced bio-hydrogenation results in an increase in desirable fatty acids and a decrease in saturated fatty acids in milk obtained from cows fed diets with camelina seeds or its by-products. Studies suggest that by-products of C. sativa can be used safely in dairy cows at appropriate inclusion levels. However, suppression in fat milk percentage and an increase in trans fatty acid isomers should be considered when increasing the inclusion rate of camelina by-products, due to health concerns.
Collapse
|
4
|
Donaldson J, Świątkiewicz S, Arczewka-Włosek A, Muszyński S, Szymańczyk S, Arciszewski MB, Siembida AZ, Kras K, Piedra JLV, Schwarz T, Tomaszewska E, Dobrowolski P. Modern Hybrid Rye, as an Alternative Energy Source for Broiler Chickens, Improves the Absorption Surface of the Small Intestine Depending on the Intestinal Part and Xylanase Supplementation. Animals (Basel) 2021; 11:1349. [PMID: 34068515 PMCID: PMC8151840 DOI: 10.3390/ani11051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
The current study investigated the effects of the inclusion of modern hybrid rye (Brasetto variety) to a corn-wheat-based diet, with or without xylanase, on the absorptive surface of the small intestine of broilers. A total of 224 one-day-old male Ross 308 broiler chicks were randomly divided into four experimental groups with seven replicate cages of eight birds/replicate. A 2 × 2 factorial study design was used, with rye inclusion (0% or 20%) and xylanase supplementation (0 or 200 mg/kg of feed) as factors. Inclusion of rye increased duodenal and ileal crypt depth, villi height, the villus-to-crypt ratio and absorption surface area (p < 0.05), and ileal mucosa thickness and crypt width (p < 0.05). Xylanase supplementation attenuated the effects of rye in the duodenum and ileum and decreased the villi height and villus-to-crypt ratio in the jejunum (p < 0.05). Rye and xylanase had no effect on the spatial distribution of claudin 3 and ZO-1 protein, but xylanase supplementation reduced the amount of claudin 3 in the duodenum and jejunum (p < 0.05). The findings of this study indicate that 20% inclusion of modern hybrid rye to the diets of broilers improved the structure of the duodenum and ileum, but these effects were attenuated by xylanase supplementation.
Collapse
Affiliation(s)
- Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 1 Krakowska St., 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Anna Arczewka-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 1 Krakowska St., 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland; (S.S.); (E.T.)
| | - Marcin Bartłomiej Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Anna Zacharko Siembida
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Jose Luis Valverde Piedra
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland; (S.S.); (E.T.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| |
Collapse
|
5
|
Kithama M, Hassan YI, Guo K, Kiarie E, Diarra MS. The Enzymatic Digestion of Pomaces From Some Fruits for Value-Added Feed Applications in Animal Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the noticed steady increase of global demand for animal proteins coupled with the current farming practices falling short in fulfilling the requested quantities, more attention is being paid for means and methods intended to maximize every available agricultural-resource in a highly sustainable fashion to address the above growing gap between production and consumers' demand. Within this regard, considerable efforts are being invested either in identifying new animal feed ingredients or maximizing the utilization of already established ones. The public preference and awareness of the importance of using waste products generated by fruit-dependent industries (juice, jams, spirits, etc.) has improved substantially in recent years where a genuine interest of using the above waste(s) in meaningful applications is solidifying and optimization-efforts are being pursued diligently. While many of the earlier reported usages of fruit pomaces as feedstuffs suggested the possibility of using minimally processed raw materials alone, the availability of exogenous digestive and bio-conversion enzymes is promising to take such applications to new un-matched levels. This review will discuss some efforts and practices using exogenous enzymes to enhance fruit pomaces quality as feed components as well as their nutrients' accessibility for poultry and swine production purposes. The review will also highlight efforts deployed to adopt numerous naturally derived and environmentally friendly catalytic agents for sustainable future feed applications and animal farming-practices.
Collapse
|
6
|
Performance and ileal amino acid digestibility in broilers fed diets containing solid-state fermented and enzyme-supplemented canola meals. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Physicochemical, Microbiological and Functional Properties of Camelina Meal Fermented in Solid-State Using Food Grade Aspergillus Fungi. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Camelina meal (CAM) was fermented in solid-state using food grade Aspergillus fungi (A. sojae, A. ficuum and their co-cultures), and the physicochemical composition, microbiological and functional properties were investigated. SSF increased the starch contents but reduced (p < 0.05) the contents of soluble carbohydrate. The microbiological counts of the fermented meals were higher (p < 0.05) than that of the unfermented CAM. Phytic acid content reduced (p < 0.05) in the fermented meals. SSF reduced the protein molecular weight and colour attributes of CAM. The fermented camelina meals had increased (p < 0.05) bulk density and swelling capacity but reduced (p < 0.05) water absorption capacity. Thus, the study indicated that SSF with A. sojae, A. ficuum and their co-cultures influenced the physicochemical, microbiological and functional properties of CAM. There is potential for the development of value-added novel food and feed products from solid-state fermented camelina meal.
Collapse
|
8
|
Luo B, Chen D, Tian G, Zheng P, Yu J, He J, Mao X, Luo Y, Luo J, Huang Z, Yu B. Effects of Dietary Aged Maize with Oxidized Fish Oil on Growth Performance, Antioxidant Capacity and Intestinal Health in Weaned Piglets. Animals (Basel) 2019; 9:ani9090624. [PMID: 31470565 PMCID: PMC6769496 DOI: 10.3390/ani9090624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In China, large quantities of maize are stored in grain depots for two years or more to mitigate the risk of natural disasters impacting feed supplies. However, it is unknown whether the use of long-term stored maize in diets will impair growth performance of piglets, and whether additional dietary oxidants would further exacerbate the effects. This study investigates the effects of dietary aged maize with the supplementation of different levels of oxidized fish oil on growth performance, nutrient digestibility, serum antioxidant activity and gut health in piglets and tries to provide a theoretical foundation for the better use of aged maize in swine production. The results of this study showed that aged maize had no significant effect on growth performance, diarrhea and nutrient digestibility of the piglets, but it did reduce serum antioxidant capacity. When oxidized fish oil was added, aged maize reduced serum antioxidant capacity further, inhibited the expressions of genes related to intestinal nutrient transport, promoted intestinal inflammation, and also reduced the apparent total tract digestibility (ATTD) of nutrients, increased diarrhea and finally reduced the growth performance of piglets. Thus, the use of aged maize in the diet of the piglets may be not feasible, especially when other oxidation-inducing factors existed, which would exacerbate the negative effects of the aged maize. Abstract This study aimed to determine the effects of dietary aged maize with supplementation of different levels of oxidized fish oil on growth performance, nutrient digestibility, serum antioxidant activity and gut health in piglets. Forty-two piglets were arranged in 2 × 3 factorial treatments in a complete randomized block design with seven replicates per treatment and one pig per replicate for 28 d. Diets included twp types of maize (normal maize or aged maize) and three levels of oxidized fish oil (OFO) (3% non-oxidized fish oil (0% OFO), 1.5% OFO and 1.5% non-oxidized fish oil (1.5% OFO), and 3% OFO (3% OFO). Results showed that dietary aged maize did not affect growth performance, diarrhea, and the apparent total tract digestibility (ATTD) of nutrients in piglets (p > 0.05). However, aged maize increased malonaldehyde (MDA) content and decreased total antioxidant capacity (T-AOC) in serum on both 14th and 28th days (p < 0.05) compared to the normal maize groups. Meanwhile, compared with normal maize, dietary aged maize showed a slight, but not significant (p > 0.10) decrease in total superoxide dismutase (T-SOD) activity and VE content in serum on the 14th day. In addition, aged maize significantly decreased GLUT2 mRNA expression (p < 0.05) and tended to increase (p < 0.10) TNF-α and IL-6 mRNA expression in jejunal mucosa. Compared with non-oxidized fish oil, oxidized fish oil resulted in the decrease of the 14–28 d and 0–28 d ADG, as well as the ATTD of dry matter (DM), ether extract (EE), organic matter (OM) (p < 0.05), whereas the increase in diarrhea index (p < 0.05) and F/G of the whole period (p < 0.05). Oxidized fish oil decreased serum T-AOC on both the 14th and the 28th days (p < 0.05), and decreased serum T-SOD activity and VE content on the 28th day (p < 0.05), whereas increased serum MDA content on the 28th day (p < 0.05) and 14th day (p < 0.10) compared with fresh fish oil. Meanwhile, MUC2 (p < 0.05) and SGLT1 (p < 0.10) mRNA expression in jejunal mucosa were decreased compared with non-oxidized fish oil. In addition, dietary oxidized fish oil tended to decrease 14–28 d ADFI and the ATTD of CP (p < 0.10), and piglets fed oxidized fish oil significantly decreased 14–28 d ADFI, the ATTD of CP, GLUT2 and SGLT1 mRNA expressions in jejunal mucosa when piglet also fed with aged maize (p < 0.05). Collectively, these results indicated that dietary oxidized fish oil decreased growth performance and nutrients digestibility of piglets fed with aged maize. This nutrient interaction may be mediated by inhibiting intestinal nutrient transporter, inducing intestinal inflammation, and reducing antioxidant capacity.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbin Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Nie W, Wang B, Gao J, Guo Y, Wang Z. Effects of dietary phosphorous supplementation on laying performance, egg quality, bone health and immune responses of laying hens challenged with Escherichia coli lipopolysaccharide. J Anim Sci Biotechnol 2018; 9:53. [PMID: 30123501 PMCID: PMC6088422 DOI: 10.1186/s40104-018-0271-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/04/2018] [Indexed: 11/10/2022] Open
Abstract
Background Phosphorus is an essential nutrient to maintain poultry health and performance. The objective of this study was to evaluate the effect of dietary phosphorus levels on egg production, egg quality, bone health, immune responses of laying hens challenged with Escherichia coli lipopolysaccharide. Methods Three hundred laying hens at 28 wk were randomly divided into 2 dietary treatments with 10 replicates of 15 birds. The wheat-soybean based diets contained either 0.12% or 0.4% non-phytate phosphorus (NPP). At 32 wk of age, all the birds of each dietary treatment were injected into the abdomen with 1.5 mg/kg body weight (BW) of either LPS or saline once a day at 24-h intervals for continuous 9 d. The performance of laying hens was evaluated for 9 d. The eggs after the fifth injection were collected to value the egg quality. Three hours after the first injection, blood was collected to measure serum metabolite and immune response associated parameters. Three hours after the fifth injection, the hens were euthanized to obtain tibia, cecal tonsils and jejunum. Results Compared with saline-injected hens, LPS-injected hens had lower feed intake and egg production (P < 0.05). Eggshell thickness, strength, albumin height and Haugh unit were significantly increased in LPS-injected hens compared with saline-injected hens (P < 0.05). Furthermore, laying hens challenged with LPS had lower villious height/ crypt depth ration than those received saline. Serum calcium, phosphorus and SOD activities significantly decreased in the LPS-injected hens compared with the control (P < 0.05). LPS up-regulated expression of IL-1β, IL-6 and IL-10 in cecum, and serum concentration of MDA, IL-1β and IL-6 (P < 0.05), whereas 0.40% dietary non-phytate phosphorus supplementation significantly increased (P < 0.05) villi height/crypt depth ratio, decreased (P < 0.05) serum MDA and IFN-γ concentration compared with the 0.12% non-phytate phosphorus group. Conclusion In summary, this study demonstrates that 0.40% dietary non-phytate phosphorus supplementation significantly increased calcium and phosphorus levels of eggshell, increased villi height/crypt depth ratio, decreased serum MDA and IFN-γ concentration compared with the 0.12% non-phytate phosphorus groups. The results indicate that high level of dietary non-phytate phosphorus exerts a potential effect in alleviating systemic inflammation of LPS-challenged laying hens.
Collapse
Affiliation(s)
- Wei Nie
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Bo Wang
- 2Department of Animal Science, Washington State University, Pullman, Washington USA
| | - Jing Gao
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zhong Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|