1
|
Jung H, Park SH, Lee J, Lee B, Park J, Seok Y, Choi JH, Kim MG, Song CS, Lee J. A Size-Selectively Biomolecule-Immobilized Nanoprobe-Based Chemiluminescent Lateral Flow Immunoassay for Detection of Avian-Origin Viruses. Anal Chem 2020; 93:792-800. [PMID: 33175513 DOI: 10.1021/acs.analchem.0c03153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, a signal-amplifiable nanoprobe-based chemiluminescent lateral flow immunoassay (CL-LFA) was developed to detect avian influenza viruses (AIV) and other contagious and fatal viral avian-origin diseases worldwide. Signal-amplifiable nanoprobes are capable of size-selective immobilization of antibodies (binding receptors) and enzymes (signal transducers) on sensitive paper-based sensor platforms. Particle structure designs and conjugation pathways conducive for antigen accessibility to maximum amounts of immobilized enzymes and antibodies have advanced. The detection limit of the CL-LFA using the signal-amplifiable nanoprobe for the nucleoprotein of the H3N2 virus was 5 pM. Sensitivity tests for low pathogenicity avian influenza H9N2, H1N1, and high pathogenicity avian influenza H5N9 viruses were conducted, and the detection limits of CL-LFA were found to be 103.5 50% egg infective dose (EID50)/mL, 102.5 EID50/mL, and 104 EID50/mL, respectively, which is 20 to 100 times lower than that of a commercial AIV rapid test kit. Moreover, CL-LFA demonstrated high sensitivity and specificity against 37 clinical samples. The signal-amplifiable probe designed in this study is a potential diagnostic probe with ultrahigh sensitivity for applications in the field of clinical diagnosis, which requires sensitive antigen detection as evidenced by enhanced signaling capacity and sensitivity of the LFAs.
Collapse
Affiliation(s)
- Huijin Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Division of Nano and Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sung Hyeon Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Division of Nano and Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.,Department of HY-KIST Bio-convergence, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Jiho Lee
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, South Korea
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Division of Nano and Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Youngung Seok
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagiro, Gwangju 500-712, Republic of Korea
| | - Jong-Ho Choi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagiro, Gwangju 500-712, Republic of Korea
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, South Korea
| | - Joonseok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Division of Nano and Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.,Department of HY-KIST Bio-convergence, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|