1
|
Effect of different dietary energy/protein ratios on growth performance, reproductive performance of breeding pigeons and slaughter performance, meat quality of squabs in summer. Poult Sci 2023; 102:102577. [DOI: 10.1016/j.psj.2023.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
|
2
|
Heijmans J, Beijer E, Duijster M, Kemp B, Kwakkel R, Gerrits W, van den Brand H. Changes in body composition and energetic efficiency in response to growth curve and dietary energy-to-protein ratio in broiler breeders. Poult Sci 2022; 102:102410. [PMID: 36565633 PMCID: PMC9801220 DOI: 10.1016/j.psj.2022.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Body composition plays an important role in reproduction in broiler breeders. The aim of this study was to evaluate the dynamics in body composition and energetic efficiency in broiler breeders, using different dietary strategies. About 1,536-day-old pullets were randomly allotted to 24 pens in a 2 × 4 factorial design with 2 growth curves (standard or elevated (+15%)) and 4 diets, with a step-wise increment in energy (96, 100, 104, and 108% apparent metabolizable energy nitrogen corrected [AMEn]) fed on a pair-gain basis. Body composition was determined at 10 time points from 0 to 60 wk of age. Body protein mass was linearly related to body weight (BW) in growing breeders, which can be expressed as -6.4+0.184*BW (R2 = 0.99; P < 0.001). Body fat mass was exponentially related to BW in growing breeders, which can be expressed as -42.2+50.8*1.0006BW (R2 = 0.98; P < 0.001). A higher energy-to-protein ratio resulted in higher body fat mass at the same BW (P < 0.001). Sexual maturation was related to body protein mass at 21 wk of age, where each 100 g of body protein mass extra advanced sexual maturation by 5.4 d (R2 = 0.83). Estimates of energetic efficiency for growth (kg) and egg production (ke) appeared not constant, but varied with age in a quadratic manner between 0.27 and 0.54 for kg and between 0.28 and 0.56 for ke. The quadratic relationship could be expressed as kg=0.408-0.0319*Age+0.00181*Age2 (R2 = 0.72; P < 0.001) and ke=-0.211+0.034*Age-0.00042*Age2 (R2 = 0.46; P < 0.001). Body protein mass in broiler breeders is tightly regulated and mainly depended on BW and seems to be the main determinant for sexual maturation. Body fat mass is exponentially related to BW, where an increase in dietary energy-to-protein ratio results in a higher body fat mass. Treatments had minimal effects on estimated energetic efficiencies in breeders.
Collapse
Affiliation(s)
- J. Heijmans
- De Heus Animal Nutrition B.V., 6717 VE Ede, the Netherlands,Animal Nutrition Group, Department of Animal Sciences, Wageningen University, NL-6700 AH Wageningen, the Netherlands,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, NL-6700 AH Wageningen, the Netherlands,Corresponding author:
| | - E. Beijer
- De Heus Animal Nutrition B.V., 6717 VE Ede, the Netherlands
| | - M. Duijster
- De Heus Animal Nutrition B.V., 6717 VE Ede, the Netherlands
| | - B. Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, NL-6700 AH Wageningen, the Netherlands
| | - R.P. Kwakkel
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, NL-6700 AH Wageningen, the Netherlands
| | - W.J.J. Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, NL-6700 AH Wageningen, the Netherlands
| | - H. van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, NL-6700 AH Wageningen, the Netherlands
| |
Collapse
|
3
|
Heijmans J, Duijster M, Gerrits W, Kemp B, Kwakkel R, van den Brand H. Impact of growth curve and dietary energy-to-protein ratio of broiler breeders on egg quality and egg composition. Poult Sci 2022; 101:101946. [PMID: 35671619 PMCID: PMC9168161 DOI: 10.1016/j.psj.2022.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022] Open
Abstract
Egg characteristics have an impact on embryonic development and post-hatch performance of broilers. The impact of growth curve (GC) and dietary energy-to-protein ratio of broiler breeder hens on egg characteristics was investigated. At hatch, 1,536 pullets were randomly allotted to 24 pens in a 2 × 4 factorial dose-response design with 2 GC (standard growth curve = SGC or elevated growth curve = EGC (+ 15%)) and 4 diets, differing in energy-to-protein ratio (defined as 96%, 100%, 104% and 108% AMEn diet). Feed allocation per treatment was adapted weekly to achieve the targeted GC and to achieve pair-gain of breeders within each GC. Breeders on an EGC produced larger eggs (∆ = 2.3 g; P < 0.001) compared to breeders on a SGC. An exponential regression curve, with age (wk) of the breeders, was fitted to describe the impact of GC and dietary energy-to-protein ratio on egg composition. Yolk weight was 0.8 g higher for eggs from EGC breeders than from SGC breeders (a−108.1*0.907Age, where a was 22.1 and 22.9 for SGC and EGC, respectively; R2 = 0.97; P<0.001). An interaction between GC and dietary energy-to-protein ratio on albumen weight was observed (P = 0.04). Dietary energy-to-protein ratio did not affect albumen weight in SGC breeders (42.7−56.2*0.934Age; R2 = 0.89), but for EGC breeders, a higher dietary energy-to-protein ratio resulted in a 0.9 g lower albumen weight from 96% AMEn to 108% AMEn (a−62.9*0.926Age, where a was 43.4, 43.2, 42.8, and 42.5 for 96% AMEn, 100% AMEn, 104% AMEn, and 108% AMEn, respectively; R2 = 0.86). Albumen DM content decreased linearly with an increased dietary energy-to-protein ratio, but this was more profound in EGC breeders (β = −0.03 %/% AMEn) than in SGC breeders (β = −0.01 %/% AMEn; P = 0.03). Overall, it can be concluded that an EGC for breeders led to larger eggs with a more yolk and albumen, whereas dietary energy-to-protein ratio had minor effects on egg composition.
Collapse
|
4
|
Effects of Nutritional Restriction during Laying Period of Fat and Lean Line Broiler Breeder Hens on Meat Quality Traits of Offspring. Animals (Basel) 2021; 11:ani11082434. [PMID: 34438890 PMCID: PMC8388661 DOI: 10.3390/ani11082434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The meat quality of livestock products is widely appreciated. Maternal nutrition can affect the deposition of nutrients in eggs, and then change the apparent metabolism, development process, and performance of offspring. Our research indicated that meat quality traits are also affected by maternal nutritional level and are related to the nutritional requirements of different genotypes. Some of the effects disappeared at the end of the growth stage. These situations remind poultry producers to consider the impact of feed restrictions on the quality of meat for future generations. Abstract The offspring meat quality of hens undergoing a 25% dietary restriction treatment during the laying period were evaluated in fat and lean line breeder. A total of 768 female birds (384/line) were randomly assigned to four groups (12 replicates/group, 16 birds/replicates). Maternal feed restriction (MFR) and normal started at 27 weeks of age. Offspring broilers were fed ad libitum. The offspring meat quality traits and muscle fiber morphology in different periods were measured. At birth, significant interactions were found on breast muscle fiber morphology (p < 0.05). At 28 days, MFR decreased breast water content and increased thigh crude fat content, and significant interactions were observed on breast crude fat and protein contents (p < 0.05). At 56 days, MFR affected morphology of peroneus longus muscle tissue, and significant interactions were found on thigh redness at 48 h and amino acid contents in breast and thigh muscle (p < 0.05). Overall, MRF may lead to offspring birth sarcopenia. Such offspring grow more easily to deposit fat in a nutritious environment, but they will self-regulate adverse symptoms during growth and development. The two lines respond differently to maternal nutritional disturbance due to different nutritional requirements and metabolic patterns.
Collapse
|
5
|
Direct and maternal reduced balanced protein diet influences the liver transcriptome in chickens. Br J Nutr 2021; 126:337-344. [PMID: 32981531 DOI: 10.1017/s0007114520003785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to evaluate, by means of RNA sequencing, the direct and transgenerational effect of a reduced balanced protein (RP) diet on broiler breeder metabolism. Chickens of the F0 generation were fed a control (C) or RP diet, and their F1 progeny was fed a C or RP diet as well, resulting in four groups of chickens: C/C, C/RP, RP/C and RP/RP. While both direct and maternal effects were seen on body weight, breast muscle weight and abdominal fat weight in the F1 generation, the direct effect was the most dominant one. The liver transcriptome in the F1 generation showed that amino acid metabolism was up-regulated in chickens that received the control feed when compared with their respective contemporaries that received the reduced protein diet. Interestingly, chickens hatched from control-fed hens but reared on the reduced protein diet (C/RP group) activated a fatty acid metabolism, expressing more fatty acid desaturase 1 gene, fatty acid desaturase 2 gene and elongation of very long-chain fatty acids protein 2 gene, when compared with control-fed chickens hatched from control-fed hens (C/C group), while chickens hatched from reduced protein-fed hens that received themselves the same reduced protein diet (RP/RP group) triggered their glucose metabolism more, showing elevated levels of phosphofructokinase gene, 6-phosphofructo-2-kinase/fructose-2,6-biphospatase 4 and fructose-biphosphate aldolase C mRNA compared with the chickens hatched from reduced protein-fed hens but reared on a control diet (RP/C group). This suggests that the maternal protein diet has an impact on the metabolism of broilers when they are reared on a RP diet.
Collapse
|
6
|
Heijmans J, Duijster M, Gerrits WJJ, Kemp B, Kwakkel RP, van den Brand H. Impact of growth curve and dietary energy-to-protein ratio on productive performance of broiler breeders. Poult Sci 2021; 100:101131. [PMID: 34089938 PMCID: PMC8182437 DOI: 10.1016/j.psj.2021.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 01/13/2023] Open
Abstract
The impact of growth curve (GC) and dietary energy-to-protein ratio on productive performance of broiler breeder females was investigated from 0 to 60 wk of age. One-day-old pullets (n = 1,536) were randomly allotted to 24 pens according to a 2 × 4 factorial arrangement, with 2 GC (standard growth curve = SGC or elevated growth curve = EGC, +15%) and 4 diets, differing in energy-to-protein ratio (96%, 100%, 104%, or 108% AMEn). Feed allocation per treatment was adapted weekly based on the desired GC, meaning that breeders fed the different diets within each GC were fed according to a paired-gain strategy. Linear and quadratic contrasts for energy-to-protein ratio for each GC were evaluated. Elevated growth curve breeders had an earlier sexual maturity (∆ = 4.1 d) than SGC breeders. Egg weight was higher for EGC breeders (∆ = 2.3 g) than for SGC breeders over the whole laying phase (22–60 wk). No differences between EGC and SGC breeders were observed on settable egg production. An increase in dietary energy-to-protein, at a similar BW, led to a linear increase in age at sexual maturity (β = 0.14 d/% AMEn). From 22 to 40 wk of age, an increase in dietary energy-to-protein ratio led to a linear decrease in egg weight (β = -0.06 g/% AMEn), regardless of GC. An interaction between GC and dietary energy-to-protein ratio was observed on settable egg production in this phase. An increase in dietary energy-to-protein ratio led to a linear decrease on settable egg production, which was more profound in EGC breeders (β = -0.70 eggs/% AMEn) than in SGC breeders (β = -0.19 eggs/% AMEn). From 41 to 60 wk of age, an interaction between GC and dietary energy-to-protein ratio was observed on egg weight. In the EGC, an increase in dietary energy-to-protein ratio led to a linear decrease in egg weight (β = -0.13 g/% AMEn), whereas in the SGC, a linear increase in egg weight was observed (β = 0.03 g/% AMEn). From 41 to 60 wk of age, no differences between diets were observed on settable egg production. It can be concluded that a higher GC of breeders has beneficial effects on egg weight, while maintaining settable egg production. Feeding breeders a lower dietary energy-to-protein ratio stimulated productive performance of broiler breeder hens, mainly during the first phase of lay. This effect was more profound when breeders were fed according to a higher GC.
Collapse
Affiliation(s)
- J Heijmans
- De Heus Animal Nutrition B.V., Ede, The Netherlands; Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | - M Duijster
- De Heus Animal Nutrition B.V., Ede, The Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - R P Kwakkel
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - H van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Grandhaye J, Lecompte F, Chartrin P, Leconte M, Riva A, Barbe A, JeanPierre É, Caldas-Silveira E, Ganier P, Chahnamian M, Ramé C, Dupont J, Froment P. Maternal dietary supplementation with grape seed extract in reproductive hens increases fertility in females but decreases semen quality in males of the F1 generation. PLoS One 2021; 16:e0246750. [PMID: 33630916 PMCID: PMC7906403 DOI: 10.1371/journal.pone.0246750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic selection in parental broiler breeders has increased their susceptibility to metabolic disorders and reproductive dysfunction. We have recently shown that maternal dietary grape seed extract (GSE) supplementation in hens improves fertility parameters, egg quality, oxidative stress in different tissues and the quality of F1 chicks. Here, we analysed the growth and fertility (both female and male) of the F1 generation animals and the quality of their offspring (F2 generation). Eggs issued from hens supplemented with GSE presented lower ROS production than control hens, suggesting a change in the embryonic environment. However, this did not affect the growth nor the body composition of male and female F1s from hatching to adulthood (37 weeks of age). At 37 weeks of age, the biochemistry analysis of the GSE-F1 muscle has revealed an increase in sensitivity to oxidative stress and a slight change in lipid composition. Both male and female F1-GSE groups presented a delay in puberty with a lower testis volume at 30 weeks of age and lower ovary development at 26 weeks of age. Adult GSE-F1 males did not present histological alterations of seminiferous tubules or semen production, but the semen quality was degraded due to higher oxidative stress and DNA-damaged spermatozoa compared with control F1 animals. In adult GSE-F1 females, despite the delay in puberty, the females laid more eggs of better quality (fewer broken eggs and a higher hatching rate). At hatching, the weight of the chicks from GSE-F1 females was reduced, and this effect was stronger in F2 male chicks (F2) compared with F2 control chicks (F2), because of the lower muscle volume. In conclusion, we can raise the hypothesis that maternal dietary GSE supplementation produces eggs with change in embryonic metabolism, which may affect in adulthood the fertility. The data obtained from the F1-GSE group pointed to a sex-specific modification with higher egg quality in females but semen sensitive to stress in males. Finally, male F2 chicks were leaner than control chicks. Thus, maternal dietary grape seed extract (GSE) supplementation in hens may impact on the fertility of the offspring in a sex-specific manner in subsequent generations.
Collapse
Affiliation(s)
- Jérémy Grandhaye
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - François Lecompte
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Pascal Chartrin
- INRAE, UMR0083 Biologie des Oiseaux et Aviculture, Nouzilly, France
| | - Maryse Leconte
- INRAE, UMR0083 Biologie des Oiseaux et Aviculture, Nouzilly, France
| | | | - Alix Barbe
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Éric JeanPierre
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Erika Caldas-Silveira
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Christelle Ramé
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Joëlle Dupont
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Pascal Froment
- INRAE Physiologie de la Reproduction et des Comportements (PRC) - UMR85 CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- * E-mail:
| |
Collapse
|
8
|
Li C, Hu Q, Lesuisse J, Schallier S, Bautil A, Lamberigts C, Driessen B, Everaert N, Lin H, Buyse J. The effect of reduced balanced protein diet on the behavior of female broiler breeders in 2 generations. Poult Sci 2019; 98:4301-4312. [PMID: 31250010 DOI: 10.3382/ps/pez347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
The behavior of 2 generations of broiler breeders undergoing a 25% reduced balanced protein (RP) dietary treatment was investigated in the current study. There were 2 treatments for the F0 generation: control (C) breeders fed with standard C diets and RP breeders fed with RP diets. The female progeny of each treatment was again subjected to 2 dietary treatments, resulting in 4 treatments for F1 generation: C/C, C/RP, RP/C, and RP/RP (breeder feed in F0/F1 generation). To maintain the target body weights throughout the trial, breeders on RP diet received on average 10% more feed than C diet breeders. The behavior of the breeders at 8h30 (30 min before feeding at 9h00), 12h00, and 15h30 in weeks 23 and 37 of the F0 generation and in week 6, 11, and 22 of the F1 generation was observed. Litter scratching, feather pecking, and object pecking were occasionally increased by RP diet feeding which indicated feeding frustration. Drinking behavior decreased dramatically by the RP dietary feeding and resulting in a better litter condition which could benefit dust bathing behavior. In addition, feeding the breeders RP diet in the F0 generation decreased litter scratching (week 6) and feather pecking (week 22, 15h30) but increased sitting (week 11, 15h30) and drinking (a tendency in week 6 and a significant effect in week 11) behavior of offspring breeders (F1 generation). In general, breeders fed with reduced balanced protein diets, to some extent, spent less time drinking and their offspring could have an adaptation to the maternal RP diet. The mechanism of this adaptation still needs to be further investigated. In general, positive effects were found by reducing protein level of breeder diets. However, negative side effects such as feeding frustration were also observed, which merit further study.
Collapse
Affiliation(s)
- C Li
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium
| | - Q Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - J Lesuisse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium
| | - S Schallier
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium
| | - A Bautil
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium
| | - C Lamberigts
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium
| | - B Driessen
- Research Group Animal Welfare, 3583 Paal, Belgium
| | - N Everaert
- Precision livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - H Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, B-3001 Heverlee, Belgium
| |
Collapse
|