1
|
Riaz MF, Mahmud A, Hussain J, Saima. Impact of dichromatic lighted incubation on hatching result and post-hatch performance of broiler chickens. Trop Anim Health Prod 2024; 56:146. [PMID: 38722408 DOI: 10.1007/s11250-024-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
This study was planned to evaluate the impact of dichromatic lights during incubation on the hatching and post-hatch performance of broiler chickens. A total of 500 eggs of broiler breeder (Ross 308; Age 44 weeks) were evenly divided according to a completely randomized design into 4 treatments having 5 replicates and 25 eggs each. Treatments consisted of dichromatic lights Blue + Red (BR), Green + Red (GR) and Green + Blue (GB) provided at an intensity of 250 lx for 12 h a day along with a Dark (D) environment. After hatching 200 chicks (50 from each respective light group) were divided into 4 treatments with 5 replicates each having 10 chicks. Results indicated a higher embryo index (13.12%) in the GR group on the 12th day of incubation; while an ideal hatch window was observed in GR and GB (98.18% and 96.00% hatched chicks) lighting groups. In hatching traits, higher hatchability (86.15) and hatch of fertile (93.85) percentages were observed in GR lighting followed by GB, BR and Dark treatment groups; while dead-in shell embryos were lowest in the GR group. In growth performance, higher feed intake (513.20 g) and body weight (479.20 g) were observed in the GB group followed by GR, BR and dark group; and feed conversion ratio (FCR) was better in the GR group (1.06). In welfare parameters, improved physical asymmetry (0.90 mm) and tonic immobility (54.40 s) were measured in the GR group followed by GB, BR and the dark group. It was concluded that under experimental conditions when broiler breeder eggs are provided with GR lighting during incubation, it can help to improve hatchability, growth performance and welfare traits in chicks.
Collapse
Affiliation(s)
- Muhammad Faisal Riaz
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan.
| | - Athar Mahmud
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jibran Hussain
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saima
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Safwan M, Mehmood S, Sherzada S, Usman M, Hashmi SGMD, Ali S, Rehman AU, Riaz MF, Elahi U, Hussain M, Latif HRA, Saleem K, Ahmad S. Effects of prenatal dichromatic light exposure on hatching results and post-hatch performance of Japanese quail. Trop Anim Health Prod 2023; 55:379. [PMID: 37880556 DOI: 10.1007/s11250-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Present study evaluated the effect of lighted incubation on pre- and post-hatch performance of Japanese quail. In a completely randomized design, 1200 eggs were evenly divided into 4 treatments groups having six replicates (each tray was considered as replicate), 50 eggs each. Different dichromatic lights (Green + Red; GR, Green + Blue; GB, and Blue + Red; BR) of 250 lux were provided during incubation for 12 h daily and effects of these lights very evaluated on hatching results and post-hatch growth. After hatch, 600 quail chicks were divided into 4 treatments, 6 replicates, and 25 birds each. Regarding hatching traits, better hatchability was found in the GR group compared to GB, BR, and dark group; while early embryonic mortality was lower in BR, GB, and dark group than GR; mid embryonic mortality was lower in dark group and late embryonic mortality was noted in the GR group than those of other treatment groups. In addition, moisture loss during incubation was minimum in BR and dark groups; however, chick spread was better in the GR group. In terms of growth performance, weight gain was better in the GR group; feed intake in dark, feed conversion ratio in BR, and livability were better in BR and GR group. In morphometrics, keel and shank length were higher in all the colored groups (GB, BR, and GR) whereas body length, wing spread, shank circumference, drumstick length, and circumference were higher in the GR group. Regarding serum chemistry, glucose, albumin, and globulin levels were higher in the GR group. It was concluded that under the experimental conditions, GR light at the prenatal stage to Japanese quail eggs positively influenced hatching performance and post-hatch growth.
Collapse
Affiliation(s)
- Muhammad Safwan
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahid Mehmood
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Usman
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Syed Ghulam Mohayud Din Hashmi
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaheryar Ali
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abd Ur Rehman
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Faisal Riaz
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Usman Elahi
- Faculty of Agriculture & Veterinary Sciences, Superior University, 17-KM Main Raiwind Road, Lahore, Pakistan
| | - Murrawat Hussain
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Rao Abdul Latif
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kinza Saleem
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
3
|
Li X, McLean N, MacIsaac J, Martynenko A, Rathgeber B. Effect of photoperiod during incubation on embryonic temperature, hatch traits and performance of two commercial broiler strains. Poult Sci 2023; 102:102632. [PMID: 37031587 PMCID: PMC10120375 DOI: 10.1016/j.psj.2023.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Provision of light during incubation has shown the potential to enhance hatching traits and affect posthatch productivity, physiology, and behavior. In this study, 2 repeated trials were conducted to investigate the effect of photoperiod and strain on the embryo temperature, hatching traits and posthatch growth performance of 2 commercial strains of broilers (Ross 308 and Cobb 500). In each trial, hatching eggs were randomly distributed into 6 incubators with 3 photoperiod treatments: blue LED light for 12 h d-1 (12L:12D) or 18 h d-1 (18L:6D) during entire incubation were compared with no illumination condition (DARK). Data were analyzed as a 3 × 2 factorial arrangement with the trial as the blocking factor. Embryos incubated under 12L:12D and 18L:6D had lower air cell temperature (P < 0.05) than the DARK embryos from d 13 of incubation onward except on the day of candling. The response of air cell temperature to periodic illumination differed between 2 strains. Cobb embryos had lower air cell temperature in 12L:12D than those incubated with 18L:6D from d 16 of incubation onward, whereas lower air cell temperature was found in Ross embryos when illuminated with 18L:6D photoperiod compared to those under 12L:12D. The 12L:12D treatment was associated with improved (P < 0.05) navel closure condition of hatchlings. There were no differences in hatchability, embryo mortality, body weight, or length at hatch among photoperiod groups or its combination with strain. No differences in production parameters were found between DARK and illuminated groups. However, 12L:12D had heavier (P < 0.05) body weight on d 14 of age and higher (P < 0.05) body weight gain than 18L:6D from d 7 to 14 of age. The results of this study indicate that providing blue LED light up to 18 h d-1 has no detrimental effect on production of broilers, however, 12L:12D light regime improved chick quality at hatch compared to DARK and resulted in heavier birds by d 14 compared to 18L:6D.
Collapse
Affiliation(s)
- Xujie Li
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Nancy McLean
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Janice MacIsaac
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Alex Martynenko
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
4
|
Guo B, Dai Z, Chen R, Liu J, Shi Z. Enhancing gosling growth and secretion of somatotrophic and thyrotrophic axis hormones through egg turning during incubation. Br Poult Sci 2023; 64:122-128. [PMID: 36083128 DOI: 10.1080/00071668.2022.2121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Growth performance of Yangzhou geese hatched from eggs with turning angles of 50° or 70° was evaluated in association with serum hormones and somatotrophic gene mRNA expression.2. Egg turning at 70° significantly (P< 0.05) increased hatchability, gosling quality and hatching weight. Gosling post-hatch body weight, leg and breast muscle weight in the 70° turning group was significantly heavier until 50 d of age.3. Serum concentrations of GH were significantly higher until 30 d of age in the 70° turning group goslings, and those of IGF-I and T3 were higher from hatching to 50 d of age.4. The mRNA expression of GHRH, pituitary GH, liver and leg muscle IGF-I were all significantly higher at 1 and 30 d of age after hatch, but not at 70 d after hatch, in the 70° turning group.5. Egg turning at 70° during incubation improves embryo and gosling quality and growth performance through up-regulation of gene expression and secretion of somatotrophic axis hormones, GHRH, GH and IGF-I, as well as T3.
Collapse
Affiliation(s)
- B Guo
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Z Dai
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - R Chen
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - J Liu
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Z Shi
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Chen Z, Qu X, Feng C, Guo B, Zhu H, Yan L. Monochromatic Green Light Stimulation during Incubation Alters Hepatic Glucose Metabolism That Improves Embryonic Development in Yangzhou Goose Eggs. Int J Mol Sci 2022; 24:ijms24010405. [PMID: 36613849 PMCID: PMC9820358 DOI: 10.3390/ijms24010405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The influence of monochromatic green light stimulation on hatching performance and embryo development has been studied in chickens, but not geese. The liver has crucial functions in the regulation of energy metabolism during embryogenesis, but its involvement in green light transduction is still unidentified. We aimed to determine the influence of monochromatic green light on Yangzhou goose hatching performance and embryo development. We also investigated the metabolomics and transcriptomic responses of the embryonic liver to green light to determine the underlying molecular mechanisms. Eggs were incubated under either 12 h of monochromatic green light/dark (12 L:12D) cycles or 24 h of darkness (0G:24D). Green light promoted embryonic development and hatching performance, also affected the expression of myogenic regulatory factors associated with muscle development. It also shortened hatching time and elevated plasma levels of growth hormone and insulin-like growth factor-1. Metabolomics and transcriptomic results revealed differentially expressed genes and metabolites with enhanced gluconeogenesis/glycolysis and increased plasma glucose and pyruvate levels under green light. Hence, the growth-promoting effect possibly through regulating energy metabolism in the liver and myogenic regulatory factors in muscle. Our findings provide important and novel insights into the mechanisms underlying the beneficial effects of green light on goose embryos.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
6
|
Wang YH, Lin J, Wang J, Wu SG, Qiu K, Zhang HJ, Qi GH. The Role of Incubation Conditions on the Regulation of Muscle Development and Meat Quality in Poultry. Front Physiol 2022; 13:883134. [PMID: 35784883 PMCID: PMC9240787 DOI: 10.3389/fphys.2022.883134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle is the most abundant edible tissue in table poultry, which serves as an important source of high protein for humans. Poultry myofiber originates in the early embryogenic stage, and the overall muscle fiber number is almost determined before hatching. Muscle development in the embryonic stage is critical to the posthatch muscle growth and final meat yield and quality. Incubation conditions including temperature, humidity, oxygen density, ventilation and lighting may substantially affect the number, shape and structure of the muscle fiber, which may produce long-lasting effect on the postnatal muscle growth and meat quality. Suboptimal incubation conditions can induce the onset of myopathies. Early exposure to suitable hatching conditions may modify the muscle histomorphology posthatch and the final muscle mass of the birds by regulating embryonic hormone levels and benefit the muscle cell activity. The elucidation of the muscle development at the embryonic stage would facilitate the modulation of poultry muscle quantity and meat quality. This review starts from the physical and biochemical characteristics of poultry myofiber formation, and brings together recent advances of incubation conditions on satellite cell migration, fiber development and transformation, and subsequent muscle myopathies and other meat quality defects. The underlying molecular and cellular mechanisms for the induced muscle growth and meat quality traits are also discussed. The future studies on the effects of external incubation conditions on the regulation of muscle cell proliferation and meat quality are suggested. This review may broaden our knowledge on the regulation of incubation conditions on poultry muscle development, and provide more informative decisions for hatchery in the selection of hatching parameter for pursuit of more large muscle size and superior meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-Jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Intra-amniotic administration of l-glutamine promotes intestinal maturation and enteroendocrine stimulation in chick embryos. Sci Rep 2022; 12:2645. [PMID: 35173228 PMCID: PMC8850624 DOI: 10.1038/s41598-022-06440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Initial nutritional stimulation is a key driving force for small intestinal maturation. In chick embryos, administration of l-glutamine (Gln) into the amniotic fluid stimulates early development of the small intestinal epithelium by promoting enterocyte differentiation. In this study, we evaluated the effects of intra-amniotic administration of Gln on enterocyte morphology and function, and elucidated a potential enteroendocrine pathway through which Gln stimulates small intestinal maturation. Our results show that Gln stimulation at embryonic day 17 significantly increased enterocyte and microvilli dimensions by 10 and 20%, respectively, within 48 h. Post-hatch, enterocytes and microvilli were 20% longer in Gln-treated chicks. Correspondingly, Gln stimulation significantly upregulated mRNA expression of brush border nutrient transporters PepT-1 and SGLT-1 and tight junction proteins TJP-1 and TJP-2, before and after hatch (P < 0.05). Since GLP-2 signaling from intestinal L-cells is associated with enterocyte growth, functionality and integrity, we examined the effects of Gln stimulation on mRNA expression of key hormones and receptors within this enteroendocrine pathway and found significant increases in GLP-2R, IGF-1 and IGF-1R expression before and after hatch (P < 0.05). In conclusion, our findings link primary nutrient stimulation in the developing small intestine with enterocyte morphological and functional maturation and enteroendocrine signaling.
Collapse
|
8
|
Wu Y, Huang J, Quan S, Yang Y. Light regimen on health and growth of broilers: an update review. Poult Sci 2021; 101:101545. [PMID: 34823171 PMCID: PMC8626679 DOI: 10.1016/j.psj.2021.101545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
The importance of lighting regimen is increasing with the industrialization of poultry production, as lighting has been intimately associated with not only the establishment of rhythm and synchronous physiology of broiler chickens, but also the secretion of hormones associated with broiler maturation and growth. In recent years, increasing attention has been paid to the effects of lighting management on growth performance, immune status, and welfare of broilers. An appropriate lighting regimen, including proper source of lighting, intensity, duration, and wavelength (color) of light, is crucial to improve the growth performance and welfare of broilers. In this review, we updated the impacts of different light regimens on health and growth performance of broilers.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Shuli Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Guo BB, Dai ZC, Ren YH, Zhu HX, Shao XB, Sun AD, Shi ZD. Improvement of goose embryonic and muscular developments by wider angle egg turning during incubation and the regulatory mechanisms. Poult Sci 2021; 100:101477. [PMID: 34695628 PMCID: PMC8554260 DOI: 10.1016/j.psj.2021.101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/15/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Egg turning during incubation plays important roles in achieving high hatching performance and gosling quality. The objective of this study was to improve embryonic and muscular developments so to achieve better gosling quality by wider egg turning angles during incubation, and to unravel the associated regulatory molecular mechanisms. In each of three consecutive incubations, 1,728 goose eggs were divided into 3 groups that were set in the same type of commercial incubators with turning angles adjusted differently to 50°, 60°, and 70°, respectively. On average of the 3 tests, incubation with wider 70° turning angle reduced the post-18-day embryo mortality, promoted embryonic growth and development, improved the hatchability and gosling quality. On embryonic day of 29, gene mRNA expression levels of the hypothalamic growth hormone-releasing hormone (GHRH), pituitary growth hormone (GH), and liver insulin-like growth factor 1 (IGF-1) were higher in the 70° turning group than in the 50° or 60° groups. Wider angle turning also increased mRNA expression levels of the muscle development regulatory genes such as MYF5, MyoD, Myogenin (MyoG), and MRF4. Changes in expression of the above genes, together with the upregulation of the Pax3 and Pax7 genes in leg muscles, well explained the enhancement of the muscular growth and development when eggs were incubated by wider turning angles. These results also extended our understanding of the impacts and mechanisms of egg turning during incubation on hatching performance and gosling quality.
Collapse
Affiliation(s)
- B B Guo
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Z C Dai
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Y H Ren
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - H X Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - X B Shao
- Anhui Tianzhijiao Goose Industry Co., Ltd., Chuzhou 239551, China
| | - A D Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Z D Shi
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
10
|
Dishon L, Avital-Cohen N, Zaguri S, Bartman J, Heiblum R, Druyan S, Porter TE, Gumułka M, Rozenboim I. The effect of selected in ovo green light photostimulation periods on post-hatch broiler growth and somatotropic axis activity. Poult Sci 2021; 100:101229. [PMID: 34161851 PMCID: PMC8239476 DOI: 10.1016/j.psj.2021.101229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022] Open
Abstract
Targeted in ovo green light (GL) photostimulation during the last days of broiler egg incubation increases embryonic expression of the somatotropic axis, similar to in ovo green light photostimulation from embryonic day (ED) 0 to the end of incubation. The aim of this study was to examine the effect of selected in ovo GL photostimulation periods on post-hatch broiler growth. Four hundred twenty fertile broiler eggs were divided into 7 treatment groups: the first incubated in the dark (standard conditions) as a negative control; the second incubated under monochromatic GL from ED0-ED20 (positive control); the third group incubated under monochromatic GL light from ED15-ED20; the fourth, fifth and sixth groups were incubated under monochromatic GL on ED16, ED17, and ED18, respectively; and the seventh group was incubated under monochromatic GL from ED18-ED20. All illumination was provided intermittently using LED lamps. After hatch, all chicks were transferred to a controlled room under standard rearing conditions. The group incubated under green light from ED18 until hatch showed similar results to the positive control group in body weights, as well as breast muscle weights (as % of body weights), and an elevation in the somatotropic axis activity during the experiment. We suggest that broiler embryos can be exposed to in ovo GL photostimulation from ED18 until hatch (hatching period), and still exhibit the same performance as obtained by photostimulation from d 0 of incubation.
Collapse
Affiliation(s)
- L Dishon
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel.
| | - N Avital-Cohen
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - S Zaguri
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - J Bartman
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - R Heiblum
- Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | - S Druyan
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - T E Porter
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Kraków, Poland
| | - M Gumułka
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - I Rozenboim
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
11
|
Providing colored photoperiodic light stimulation during incubation: 1. Effects on embryo development and hatching performance in broiler hatching eggs. Poult Sci 2021; 100:101336. [PMID: 34298385 PMCID: PMC8322468 DOI: 10.1016/j.psj.2021.101336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Providing lighting schedule during incubation has been shown to improve chick quality and reduce stress posthatch. This study was conducted to evaluate the effects of providing light of different colors during incubation on embryo development, air cell temperature, the spread of hatch, and hatching performance. Four batches of eggs (n = 2,176, 1,664, 1,696 and 1,600) from Ross 308 broiler breeders were used in the experiment. In each trial, eggs were randomly distributed into 4 lighting treatments. The incubation lighting treatments included: incubated under dark as control, illuminated with white, red or blue lights for 12 h daily. There were no incubation lighting treatment differences in embryo development, the spread of hatch, hatchability, embryo mortality, hatch weight, chick length, navel closure quality, yolk-free body weight, or relative spleen weight. However, embryos incubated under red light had lower average air cell temperature than those in dark, white or blue light treatments. This finding may suggest higher melatonin secretion during the scotophase when illuminated with red light. Male chicks incubated under dark had a higher bursa of Fabricius weight than males illuminated with blue light. In conclusion, these results suggest that the red, white and blue light stimulation during incubation had no negative effects on hatchability, embryo mortality, spread of hatch or day-old chick quality, but may have potential impacts on immunity and energy metabolism in broiler embryos.
Collapse
|
12
|
Abdulateef SM, Al-Bayar MA, Majid AA, Shawkat SS, Tatar A, Al-Ani MQ. Effect of exposure to different light colors on embryonic development and neurophysiological traits in the chick embryo. Vet World 2021; 14:1284-1289. [PMID: 34220132 PMCID: PMC8243699 DOI: 10.14202/vetworld.2021.1284-1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Many environmental factors exist that influence embryonic development which is missing in the poultry industry, such as light in incubation facilities or hatcheries. Light plays an important role in the growth and development of chick embryos, whereas dark environments can lead to hatching failure or embryo distortion. Therefore, this study aimed to demonstrate the importance of light and its various colors on the growth and development of broiler chick embryos. Materials and Methods: Four treatments were used to study the impact of various light colors on the growth of embryos and their neurophysiological traits: Dark without light (D), red light (RL), blue light (BL), and green light (GL), with three replicates per treatment (25 eggs/replicate) for a total of 300 fertile Ross 308 eggs. Each treatment was assigned to one incubator (75 eggs/incubator), whereas all other conditions were kept the same. Results: The results showed a significant increase (p<0.01) in embryonic development for embryo weight, chick body weight, hatchability, and embryo index for RL, BL, and especially GL. RL, BL, and especially GL significantly increased (p<0.01) neurophysiological traits of the neurons, brain weight, and brain index. Conclusion: The use of light during the embryonic period affects the development of the embryo and its neurophysiological traits.
Collapse
Affiliation(s)
- S M Abdulateef
- Department of Animal Production, College of Agriculture, University of Anbar, Ramadi, Anbar, Iraq
| | - M A Al-Bayar
- Department of Animal Production, College of Agriculture, University of Anbar, Ramadi, Anbar, Iraq
| | - A A Majid
- Department of Animal Production, College of Agriculture, University of Anbar, Ramadi, Anbar, Iraq
| | - S S Shawkat
- Department of Animal Sciences, College of Agricultural Sciences, University of Sulaimani, Kurdistan, Iraq
| | - A Tatar
- Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
| | - M Q Al-Ani
- Department of Biology, College of Science, University of Anbar, Ramadi, Anbar, Iraq
| |
Collapse
|
13
|
Impact of light stimulation during incubation on hatching traits and post-hatch performance of commercial broilers. Trop Anim Health Prod 2021; 53:107. [PMID: 33420837 DOI: 10.1007/s11250-020-02492-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
Light in terms of photo- and scoto-periods is the key ambient factor affecting the physiology of birds through establishing normal biological clock and circadian rhythms. In natural incubation light significantly influences embryonic development, however, at commercial setups eggs are incubated under a dark environment. Presently not a single commercial poultry hatchery is using light during incubation; hence, comprehensive studies are needed to address the industry for considering light as a potential embryonic growth stimulant. In the present study, white Light-emitting diodes (LEDs; 5000 K) were installed in the incubator and 250 lx light intensity was provided for 0, 12, and 24 h per day during the whole incubation period. A total of 900 broiler hatching eggs (Hubbard classic; from 58 weeks old parents) were randomly allocated to 3 treatment groups, having 5 replicates of 60 eggs each, a tray was considered as replicate during incubation and these eggs were incubated under standard incubation protocols. After hatching, a total of 300 chicks were picked and divided into 3 described treatments (0, 12, and 24 h of photo-stimulation to eggs during incubation) having 5 replicates of 20 birds each. The results indicated that incubation of eggs under 12 and 24 h of lighting significantly improved (P ≤ 0.05) hatch window, hatchability % (0.0002), a hatch of fertile % (0.001), and carcass yield % (0.0454). Embryonic mortality, dead germs, and dead in shell embryos were lower in eggs incubated under 12 h light. Significantly better FCR (0.0006), stress susceptibilities such as H/L ratio (0.0227), and physical asymmetry (0.0065) were observed among the birds incubated under 12 h light (P ≤ 0.05). In conclusion, an appropriate light stimuli (12 h) may help to improve hatching traits and post-hatch performance of commercial broiler.
Collapse
|
14
|
Dishon L, Avital-Cohen N, Zaguri S, Bartman J, Heiblum R, Druyan S, Porter TE, Gumulka M, Rozenboim I. In ovo green light photostimulation during the late incubation stage affects somatotropic axis activity. Poult Sci 2020; 100:467-473. [PMID: 33518098 PMCID: PMC7858043 DOI: 10.1016/j.psj.2020.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 02/02/2023] Open
Abstract
Targeted green light photostimulation during the last stage of broiler incubation increases expression of the somatotropic axis. The purpose of this study was to further shorten the in ovo green light photostimulation and determine the critical age for photostimulation in broilers embryos, as a future strategy for broiler incubation. Fertile broilers eggs (n = 420) were divided into 5 treatment groups. The first group was incubated under standard conditions (in the dark) as the negative control group. The second was incubated under intermittent monochromatic green light using light-emitting diode lamps with an intensity of 0.1 W/m2 at shell level from embryonic day (ED) 0 of incubation until hatch, as a positive control. The third, fourth, and fifth groups were incubated under intermittent monochromatic green light from ED 15, 16, and 18 of incubation, respectively, until hatch. All treatment groups showed elevated somatotropic axis expression compared with the negative control, with the group incubated under monochromatic green light from ED 18 until hatch showing results closest to the positive control. This suggests that broiler embryos can be exposed to in ovo green light photostimulation from a late stage of incubation (when transferring the eggs to the hatchery) and exhibit essentially the same outcome as obtained by photostimulation during the entire incubation period.
Collapse
Affiliation(s)
- L Dishon
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel.
| | - N Avital-Cohen
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - S Zaguri
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - J Bartman
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - R Heiblum
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - S Druyan
- Institute of Animal Science, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742, USA
| | - M Gumulka
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, University of Agriculture in Krakow, Krakow, Poland
| | - I Rozenboim
- Department of Animal Sciences, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
15
|
Yameen RMK, Hussain J, Mahmud A. Effects of different light durations during incubation on hatching, subsequent growth, welfare, and meat quality traits among three broiler strains. Trop Anim Health Prod 2020; 52:3639-3653. [PMID: 32940856 DOI: 10.1007/s11250-020-02401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
Present study was aimed to evaluate the hatching traits and subsequent performance of broilers strains under the intermittent and continuous light regime during incubation. In total, 2250 eggs from Hubbard classic, Cobb-500, and Ross-308 strains (750 eggs from each of same age breeders) were incubated under three different light durations. First treatment was the incubation totally under darkness where no light was able to penetrate in the assigned section of machine. In the second treatment, eggs were incubated at 12 h of lightness and 12 h of darkness. In the third treatment, the eggs received lightning of 24 h. Data were collected for hatching traits and hatch window, growth performance, welfare aspects, and meat quality. A two-way factorial analysis was performed using SAS software applying Duncan's multiple range test. The results showed that hatching traits were improved when Hubbard breeder eggs were provided with light period of 12 h. However, gait score was non-significantly different among the treatment. The meat quality was better in Hubbard broilers obtained after 12 h of intermittent light during incubation. Blood biochemistry was also improved in Hubbard broilers of 12 h of light duration. It was concluded that 12 h of light period during incubation is beneficial for getting better hatchability and subsequent performance of Hubbard broilers.
Collapse
Affiliation(s)
- Rao Muhammad Kashif Yameen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Jibran Hussain
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Athar Mahmud
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
16
|
van der Pol CW, van Roovert-Reijrink IAM, Gussekloo SWS, Kranenbarg S, Leon-Kloosterziel KM, van Eijk-Priester MH, Zeman M, Kemp B, van den Brand H. Effects of lighting schedule during incubation of broiler chicken embryos on leg bone development at hatch and related physiological characteristics. PLoS One 2019; 14:e0221083. [PMID: 31415653 PMCID: PMC6695123 DOI: 10.1371/journal.pone.0221083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Providing a broiler chicken embryo with a lighting schedule during incubation may stimulate leg bone development. Bone development may be stimulated through melatonin, a hormone released in darkness that stimulates bone development, or increased activity in embryos exposed to a light-dark rhythm. Aim was to investigate lighting conditions during incubation and leg bone development in broiler embryos, and to reveal the involved mechanisms. Embryos were incubated under continuous cool white 500 lux LED light (24L), continuous darkness (24D), or 16h of light, followed by 8h of darkness (16L:8D) from the start of incubation until hatching. Embryonic bone development largely takes place through cartilage formation (of which collagen is an important component) and ossification. Expression of genes involved in cartilage formation (col1α2, col2α1, and col10α1) and ossification (spp1, sparc, bglap, and alpl) in the tibia on embryonic day (ED)13, ED17, and at hatching were measured through qPCR. Femur and tibia dimensions were determined at hatch. Plasma growth hormone and corticosterone and pineal melatonin concentrations were determined every 4h between ED18.75 and ED19.5. Embryonic heart rate was measured twice daily from ED12 till ED19 as a reflection of activity. No difference between lighting treatments on gene expression was found. 24D resulted in higher femur length and higher femur and tibia weight, width, and depth at hatch than 16L:8D. 24D furthermore resulted in higher femur length and width and tibia depth than 24L. Embryonic heart rate was higher for 24D and 16L:8D in both its light and dark period than for 24L, suggesting that 24L embryos may have been less active. Melatonin and growth hormone showed different release patterns between treatments, but the biological significance was hard to interpret. To conclude, 24D resulted in larger leg bones at hatch than light during incubation, but the underlying pathways were not clear from present data.
Collapse
Affiliation(s)
- Carla W. van der Pol
- Research department, HatchTech B.V., Veenendaal, the Netherlands
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
- * E-mail:
| | | | - Sander W. S. Gussekloo
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Sander Kranenbarg
- Experimental Zoology Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Margaretha H. van Eijk-Priester
- Research department, HatchTech B.V., Veenendaal, the Netherlands
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Bas Kemp
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|