1
|
Coja T, Adriaanse P, Choi J, Finizio A, Giraudo M, Kuhl T, Metruccio F, McVey E, Paparella M, Pieper S, Scanziani E, Teodorovic I, Van der Brink P, Wilks M, Marinovich M, Ferilli F, Gobbi A, Panzarea M, Vianello G, Lava R. Statement concerning the review of the approval of the basic substances chitosan and chitosan hydrochloride when used in plant protection. EFSA J 2025; 23:e9318. [PMID: 40182011 PMCID: PMC11966830 DOI: 10.2903/j.efsa.2025.9318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The European Commission asked EFSA to provide an opinion according to Article 23(6) of Regulation (EC) No 1107/2009, in conjunction with Article 29 of Regulation (EC) No 178/2002, regarding the approved plant protection uses of chitosan and chitosan hydrochloride as basic substances. The Panel on Plant Protection Products and their Residues (PPR) was not provided with new dossiers but collated available scientific and technical knowledge and used a weight of evidence approach and experts' judgement for its appraisal. The statement has considered the possibility for extrapolation of the toxicological properties between chitosan and chitosan hydrochloride, and whether both substances can be expected to be of no toxicological concern; a comparison between the estimated levels of chitosan and chitosan hydrochloride resulting from the approved uses as basic substances and the level of chitosan expected to naturally occur in the environment. This last comparison served to verify whether the approved uses as basic substances might lead to an exceedance of the expected natural background levels in any of the environmental compartments (quantitative for the soil compartment and (semi)quantitative for the freshwater compartment); and accordingly, whether there was a need to advise on the safety of chitosan and chitosan hydrochloride to non-target species occurring in the impacted environmental compartments. Overall, the PPR Panel concluded that toxicological properties can be extrapolated between chitosan and chitosan hydrochloride and that no toxicological concerns were identified. The estimated levels of chitosan and chitosan hydrochloride in the environment following application in accordance with their approved uses as basic substances would be within the same range, or below, the expected natural background exposure levels in soil and freshwaters. Considering the available ecotoxicological data and the environmental fate assessment, further consideration in relation to the safety to non-target organisms was considered not necessary. Missing information alongside related uncertainties have been identified and considered in the overall weight of the evidence.
Collapse
|
2
|
Liu Q, Akhtar M, Kong N, Zhang R, Liang Y, Gu Y, Yang D, Nafady AA, Shi D, Ansari AR, Abdel-Kafy ESM, Naqvi SUAS, Liu H. Early fecal microbiota transplantation continuously improves chicken growth performance by inhibiting age-related Lactobacillus decline in jejunum. MICROBIOME 2025; 13:49. [PMID: 39930537 PMCID: PMC11808950 DOI: 10.1186/s40168-024-02021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND At an early age, chickens commonly exhibit a rise in the average daily gain, which declines as they age. Further studies indicated that the decrease in chicken growth performance at a later age is closely associated with an age-related decline in Lactobacillus abundance in the small intestines. Whether inhibiting the age-related decline in Lactobacillus in the small intestine by early fecal microbiota transplantation (FMT) could improve chicken growth performance is an interesting question. RESULTS 16S rRNA gene sequencing revealed a higher jejunal Lactobacillus abundance in high body weight chickens in both two different chicken breeds (yellow feather chickens, H vs L, 85.96% vs 55.58%; white feather chickens, H vs L, 76.21% vs 31.47%), which is significantly and positively associated with body and breast/leg muscle weights (P < 0.05). Moreover, the jejunal Lactobacillus abundance declined with age (30 days, 74.04%; 60 days, 50.80%; 120 days, 34.03%) and the average daily gain rose in early age and declined in later age (1 to 30 days, 5.78 g; 30 to 60 days, 9.86 g; 60 to 90 days, 7.70 g; 90 to 120 days, 3.20 g), indicating the age-related decline in jejunal Lactobacillus abundance is closely related to chicken growth performance. Transplanting fecal microbiota from healthy donor chickens with better growth performance and higher Lactobacillus abundance to 1-day-old chicks continuously improved chicken growth performance (Con vs FMT; 30 days, 288.45 g vs 314.15 g, P < 0.05; 60 days, 672.77 g vs 758.15 g, P < 0.01; 90 days, 1146.08 g vs 1404.43 g, P < 0.0001) even after stopping fecal microbiota transplantation at 4th week. Four-week FMT significantly inhibited age-related decline in jejunal Lactobacillus abundance (Con vs FMT, 30 days, 65.07% vs 85.68%, P < 0.01; 60 days, 38.87% vs 82.71%, P < 0.0001 and 90 days, 34.23% vs 60.86%, P < 0.01). Moreover, the numbers of goblet and Paneth cells were also found significantly higher in FMT groups at three time points (P < 0.05). Besides, FMT triggered GH/IGF-1 underlying signaling by significantly increasing the expressions of GH, GHR, and IGF-1 in the liver and IGF-1 and IGF-1R in muscles along age (P < 0.05). CONCLUSION These findings revealed that age-related decline in jejunal Lactobacillus abundance compromised chicken growth performance, while early fecal microbiota transplantation continuously improved chicken growth performance by inhibiting age-related jejunal Lactobacillus decline, promoting the integrity of jejunal mucosal barrier and up-regulating the expression level of genes related to growth axis. Video Abstract.
Collapse
Affiliation(s)
- Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rumeng Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaqian Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Danyi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | | | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Xu Y, Huang Y, Wu W, Suahid MS, Luo C, Zhu Y, Guo Y, Yuan J. Augmentation of Fermentability and Bioavailability Characteristics of Wheat Bran via the Synergistic Interaction between Arabinoxylan-Specific Degrading Enzymes and Lactic Acid Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22186-22198. [PMID: 39344507 DOI: 10.1021/acs.jafc.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
To enhance the use of wheat bran in chicken feed, a solid-state fermentation approach was used with Lactobacillus paracasei LAC28 and Pediococcus acidilactici BCC-1, along with arabinoxylan-specific degrading enzymes (xylanase, arabinofuranosidase, feruloyl esterase, XAF). The effects of the fermentation process were evaluated both in vitro and in vivo. In the in vitro study, XAF supplementation demonstrated superior performance, significantly reducing the pH of the fermented wheat bran (FWB) and increasing lactic, acetic, and butyric acid levels, total phenol content, and free radical scavenging capacity (P < 0.05) compared to the XAF-free group. In the in vivo study, broilers were fed diets containing either unfermented wheat bran (UFWB) or FWB (fermented individually with LAC28 or BCC-1). Broilers fed FWB with BCC-1 exhibited significant improvements in body weight gain, intestinal morphology, and nutrient digestibility (P < 0.05) compared to the control group. Moreover, the FWB established a healthier microbial community in the avian gastrointestinal tract. Overall, this study demonstrated the potential of combining XAF and bacteria to enhance wheat bran fermentation, benefiting broiler intestinal health and growth. This innovative approach holds promise as a cost-efficient and sustainable strategy to improve the nutritional quality of wheat bran for animal feed applications.
Collapse
Affiliation(s)
- Yanwei Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yihong Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Suhaib Suahid
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Caiwei Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Lan R, Wu F, Wang Y, Lin Z, Wang H, Zhang J, Zhao Z. Chitosan oligosaccharide improves intestinal function by promoting intestinal development, alleviating intestinal inflammatory response, and enhancing antioxidant capacity in broilers aged d 1 to 14. Poult Sci 2024; 103:103381. [PMID: 38157786 PMCID: PMC10790092 DOI: 10.1016/j.psj.2023.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
This study was conducted to investigate the effects of chitosan oligosaccharide (COS) supplementation on intestinal development and functions, inflammatory response, antioxidant capacity and the related signaling pathways in broilers aged d 1 to 14. A total of 240 one-day old male Arbor Acres broilers (40.47 ± 0.30 g) were randomly allotted to 4 groups, and each group consisted of 6 replicate pens with 10 broilers per replicate. Broilers fed a basal diet supplementation with COS at 0 (CON group), 200 (COS200 group), 400 (COS400 group), and 800 mg/kg (COS800 group) for 14 d, respectively. Broilers in the COS supplementation groups had no significant effects on growth performance. Compared to the CON group, dietary COS supplementation increased (P < 0.05) the relative weight of duodenum, jejunal lipase activity, duodenal and ileal villus surface area, and lower (P < 0.05) ileal amylase and alkaline phosphatase activity, and crypt depth. The expression level of duodenal glucose transporter 1 (GLUT1), Na+-glucose cotransporter 1 (SGLT1), peptide transporter 1 (PepT1), occludin, zonula occludens-1 (ZO-1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and interleukin-10 (IL-10), jejunal SGLT1, PepT1, occludin, tumor necrosis factor-α (TNF-α), and ileal SGLT1, PepT1, and fatty acid binding protein 1 (FABP1) was upregulated by COS. However, the expression level of duodenal FABP1 and TNF-α, jejunal GLUT1, ZO-1, TLR4, MyD88, nuclear factor kappa-B p65 (NF-κB p65), and IL-1β, and ileal GLUT1, NF-κB p65, and IL-1β was downregulated by COS. Furthermore, dietary COS supplementation increased duodenal catalase (CAT), glutathione peroxidase (GSH-Px), and total superoxide dismutase (T-SOD) activity, jejunal CAT and T-SOD activity, upregulated the expression level of duodenal nuclear factor-erythroid 2-related factor 2 (Nrf2), CAT, glutathione peroxidase 1 (GPX1), and copper and zinc superoxide dismutase (Cu/Zn SOD), jejunal CAT, and ileal Nrf2, CAT, and GPX1. These results suggested that COS could promote intestinal development and functions in broilers aged d 1 to 14, which might be mediated by alleviating intestinal inflammatory response and enhancing antioxidant capacity.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Fan Wu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Yuchen Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Ziwei Lin
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Haoxuan Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Jia Zhang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China
| | - Zhihui Zhao
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524-088, Guangdong, PR China.
| |
Collapse
|
5
|
Belhadj Slimen I, Yerou H, Ben Larbi M, M’Hamdi N, Najar T. Insects as an alternative protein source for poultry nutrition: a review. Front Vet Sci 2023; 10:1200031. [PMID: 37662983 PMCID: PMC10470001 DOI: 10.3389/fvets.2023.1200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
This review summarizes the most relevant scientific literature related to the use of insects as alternative protein sources in poultry diets. The black soldier fly, the housefly, the beetle, mealworms, silkworms, earthworms, crickets, and grasshoppers are in the spotlight because they have been identified as an important future source of sustainable animal proteins for poultry feeding. Insect meals meet poultry requirements in terms of nutritional value, essential amino acid composition, nutrient digestibility, and feed acceptance. Furthermore, they are enriched with antimicrobial peptides and bioactive molecules that can improve global health. Results from poultry studies suggest equivalent or enhanced growth performances and quality of end-products as compared to fish meal and soybean meal. To outline this body of knowledge, this article states established threads of research about the nutrient profiles and the digestibility of insect meals, their subsequent effects on the growth and laying performances of poultry as well as the quality of meat, carcass, and eggs. To fully exploit insect-derived products, the effects of insect bioactive molecules (antimicrobial peptides, fatty acids, and polysaccharides) were addressed. Furthermore, as edible insects are likely to take a meaningful position in the feed and food chain, the safety of their derived products needs to be ensured. Some insights into the current knowledge on the prevalence of pathogens and contaminants in edible insects were highlighted. Finally, the effect of insect farming and processing treatment on the nutritive value of insect larvae was discussed. Our overview reveals that using insects can potentially solve problems related to reliance on other food sources, without altering the growth performances and the quality of meat and eggs.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Houari Yerou
- Department of Agronomic Sciences, SNV Institute, Mustapha Stambouli University, Mascara, Algeria
- Laboratory of Geo Environment and Development of Spaces, Mascara University, Mascara, Algeria
| | - Manel Ben Larbi
- Higher School of Agriculture, University of Carthage, Mateur, Tunisia
| | - Naceur M’Hamdi
- Research Laboratory of Ecosystems and Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Taha Najar
- Laboratory of Materials Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, Tunis, Tunisia
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| |
Collapse
|
6
|
Uyanga VA, Ejeromedoghene O, Lambo MT, Alowakennu M, Alli YA, Ere-Richard AA, Min L, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Chitosan and chitosan‑based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
7
|
Boontiam W, Hong J, Kitipongpysan S, Wattanachai S. Full-fat field cricket (Gryllus bimaculatus) as a substitute for fish meal and soybean meal for weaning piglets: effects on growth performance, intestinal health, and redox status. J Anim Sci 2022; 100:skac080. [PMID: 35289918 PMCID: PMC9047170 DOI: 10.1093/jas/skac080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Full-fat field cricket meal (FCP) is an alternative protein ingredient in livestock production; however, the effects of replacing conventional protein sources with FCP in nursery diets have not been determined. In this study, the effects of the partial replacement of either fish meal or soybean meal with FCP on weaning pigs were evaluated, including the analyses of growth performance, nutrient utilization, intestinal morphology,
immunity, oxidative stress, and fecal microbial counts. A total of 100 crossbred weaning pigs [(Landrace × Large White) × Duroc] were allotted to one of the following five treatments with five replicates (four pigs/pen) and fed for 28 d postweaning. Treatments were 1) a corn-soybean meal (SBM)-based diet with 5% fish meal (Positive control; PC), 2) a corn-SBM-based diet without fish meal (Negative control; NC), 3) field crickets replacing fishmeal on a total Lys basis (FCP1), 4) field crickets replacing fishmeal on a kg/kg basis (FCP2), and 5) field crickets replacing fish meal and soybean meal (FCP3). The piglets on FCP1 had a higher body weight on days 14 and 28, and an increased average daily gain over the experimental period than NC (P < 0.05); FCP2 and FCP3 were similar to the FCP1 treatment. The incidence of diarrhea was lower under an FCP-supplemented diet than under the NC diet throughout the study (P < 0.05). Pigs fed FCP1 and FCP2 had a higher digestibility of crude
protein (P = 0.041), and all FCP groups increased crude fat digestibility (P = 0.024). FCP1 and FCP2 also increased jejunal villus height
(P = 0.009), whereas the increase in jejunal villus-to-crypt ratios (P = 0.019) was greater in pigs fed the FCP2 diet than those fed the NC diet. Furthermore, FCP2 supplementation increased serum immunoglobulin A levels on days 14 and 28, including reduced serum interleukin-6 and tumor necrosis factor alpha levels (P < 0.05). Pigs fed an FCP2 diet had reduced malondialdehyde levels than those fed a PC diet, while pigs fed an FCP2 diet had higher superoxide dismutase and glutathione peroxidase levels, and more fecal Lactobacillus spp. than those fed an NC diet (P < 0.05). These results support the use of FCP as an alternative protein ingredient with beneficial effects on growth performance, intestinal morphology, antioxidant capacity, and intestinal microbiota. In particular, FCP can be used as a partial substitute for fish meal and soybean meal without detrimental effects on weaning pigs.
Collapse
Affiliation(s)
- Waewaree Boontiam
- Division of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, U083SA, USA
| | - Sumetee Kitipongpysan
- Division of Agriculture, Faculty of Agriculture and Life Science, Chandrakasem Rajabhat University, Bangkok 10900, Thailand
| | - Suchat Wattanachai
- Division of Surgery and Theriogenology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Elnesr SS, Elwan HAM, El Sabry MI, Shehata AM, Alagawany M. Impact of chitosan on productive and physiological performance and gut health of poultry. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2041992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Mohamed I. El Sabry
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Elahi U, Xu C, Wang J, Lin J, Wu SG, Zhang HJ, Qi GH. Insect meal as a feed ingredient for poultry. Anim Biosci 2022; 35:332-346. [PMID: 34991217 PMCID: PMC8831830 DOI: 10.5713/ab.21.0435] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
Shortage of protein feed resources is the major challenge to the world farm animal industry. Insects are known as an alternative protein source for poultry. A wide range of insects are available for use in poultry diets. Insect larvae thrive in manure, and organic waste, and produce antimicrobial peptides to protect themselves from microbial infections, and additionally these peptides might also be functional in poultry feed. The feed containing antimicrobial peptides can improve the growth performance, nutrient digestibility, intestinal health, and immune function in poultry. Insect meal contains a higher amount of essential amino acids compared to conventional feedstuffs. Black soldier fly, mealworm, housefly, cricket/Grasshopper/Locust (Orthoptera), silkworm, and earthworm are the commonly used insect meals in broiler and laying hen diets. This paper summarizes the nutrient profiles of the insect meals and reviews their efficacy when included in poultry diets. Due to the differences in insect meal products, and breeds of poultry, inconsistent results were noticed among studies. The main challenge for proper utilization, and the promising prospect of insect meal in poultry diet are also addressed in the paper. To fully exploit insect meal as an alternative protein resource, and exert their functional effects, modes of action need to be understood. With the emergence of more accurate and reliable studies, insect meals will undoubtedly play more important role in poultry feed industry.
Collapse
Affiliation(s)
- Usman Elahi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Changchun Xu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Lin
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Chen R, Guo RH, Lei MM, Zhu HX, Yan LY, Shi ZD. Research Note: Development of a sandwich ELISA for determining plasma growth hormone concentrations in goose. Poult Sci 2021; 101:101631. [PMID: 34986448 PMCID: PMC8743213 DOI: 10.1016/j.psj.2021.101631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Growth hormone (GH) is required for normal postnatal development in poultry; however, no immunoassay exists to assess its levels in geese plasma, hindering the study of endocrine regulation in this species. We developed a sandwich ELISA to determine the GH concentrations in the plasma of geese. Recombinant goose GH was produced using a eukaryotic expression system and purified for use as the reference standard in ELISA and the antigen for producing the polyclonal antibodies in rabbits. Rabbit anti-goose GH polyclonal antibody was used to coat the wells of the ELISA plate, and its biotinylated form served as the detection antibody. An avidin-conjugated horseradish peroxidase was used to bind the detection antibody and catalyze the chromogenic reaction of 3,3,5,5-tetramethylbenzidine and H2O2. A sigmoidal curve was fitted to the optical density and the log of the standard GH concentration using the four-parameter logistic model. The sensitivity of the assay was less than 0.156 ng/mL. The intra- and interassay coefficients of variation were less than 9 and 13%, respectively. The response curve of the serially diluted plasma samples from geese exhibited a good parallel relationship with that observed for the reference standards. The assay effectively detected differences in GH concentrations in plasma samples from geese at various physiological stages; thus, it will be useful for future study of their growth and metabolism.
Collapse
Affiliation(s)
- R Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - R H Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - M M Lei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - H X Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - L Y Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Z D Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
11
|
He C, Lei J, Yao Y, Qu X, Chen J, Xie K, Wang X, Yi Q, Xiao B, Guo S, Zou X. Black Soldier Fly ( Hermetia illucens) Larvae Meal Modulates Intestinal Morphology and Microbiota in Xuefeng Black-Bone Chickens. Front Microbiol 2021; 12:706424. [PMID: 34603233 PMCID: PMC8482533 DOI: 10.3389/fmicb.2021.706424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The addition of Hermetia illucens larvae meal (HILM) to the feed could contribute to particular antimicrobial and intestinal health in animal husbandry. This study was conducted to investigate the effects of HILM on intestinal morphology and microbial diversity in different intestinal segments of Xuefeng black-bone chickens. All of 432 birds (45 weeks old) were randomly assigned to four equal groups with six replicates and 18 hens in each replicate: (A) basal diet, (B) basal diet with 1% HILM, (C) basal diet with 3% HILM, and (D) basal diet with 5% HILM. The results showed that, compared with the basal diet group, the HILM supplement significantly increased the abundance-based coverage estimator (ACE) and Chao index in cecum (p < 0.05). Diet with 1% HILM significantly increased the villus height (VH) of the duodenum (p < 0.05) and cecum microbial diversity as represented by the Simpson index (p < 0.05). In particular, 1% HILM displayed a markedly increase in the genus unclassified Bacteroidales (cecum, p < 0.05). A basal diet with 3% HILM markedly increased the beneficial genus Romboutsia (jejunum, p < 0.05). Also, principal component analysis (PCA) cluster analysis showed that 3% of HILM was more individual than other groups (p < 0.05). However, 5% HILM decreased the VH and the ratio of villus height to crypt depth (VH/CD) of the jejunum and increased beneficial bacteria such as Staphylococcus (p < 0.05), which was regarded as pathogenetic genera. In conclusion, we found that HILM improved intestinal morphology and increased microbiological diversity and species abundance. Together, dietary supplementation of 1 or 3% HILM might benefit the intestinal morphology and intestinal microbiota of Xuefeng black-bone chicken. However, the addition of 5% HILM could decrease VH and the ratio of VH/CD of the jejunum and increased pathogenetic genera. HILM was an excellent protein substitute for Xuefeng black-bone chickens, which could meet the nutritional requirements under the condition of less feed. These results provide information for HILM meal as an alternative source of soybean meal in Xuefeng black-bone chickens’ feed.
Collapse
Affiliation(s)
- Changqing He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiaxing Lei
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yaling Yao
- Huaihua Animal Husbandry and Fishery Affairs Center, Huaihua, China
| | - Xiangyong Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jifa Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Kailai Xie
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China
| | - Xingju Wang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China
| | - Qi Yi
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co., Ltd., Huaihua, China
| | - Songchang Guo
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaoyan Zou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Overview of the Use of Probiotics in Poultry Production. Animals (Basel) 2021; 11:ani11061620. [PMID: 34072694 PMCID: PMC8230106 DOI: 10.3390/ani11061620] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Probiotics are feed additives that have gained popularity in poultry production following the ban of antibiotic growth promoters (AGP). They are one of the more universal feed additives and can be easily combine with other additives. Probiotics, above all, have many advantages, including stimulation of the host microflora or immunomodulation. The statement “immunity comes from the intestines” has become more important in the poultry industry because probiotics have proven helpful in the fight against diseases of bacterial origin and against zoonoses. Positive effects on the organism have already been studied at the cellular level, where probiotics were responsible for changes in gene expression, leading to alleviation of heat stress. In addition to the health benefits, the utility value of the animals increases. The numerous advantages are overshadowed by a few drawbacks, which include the possibility of lowering semen quality in roosters and the diversity of production processes affecting the persistence of the probiotic. In addition to bird health, probiotics have improved the taste and quality of poultry products. Future prospects are promising as scientists are working to maximize the positive effects of probiotics by increasing the integrity of probiotics within the bird organism, taking into account, among others, bacterial metabolites. Abstract In recent years, probiotics have become more popular in the world of dietary supplements and feed additives within the poultry industry, acting as antibiotic substitutes. Above all, probiotics are universal feed additives that can be used in conjunction with other additives to promote improved performance and health. Their positive effects can be observed directly in the gastrointestinal tract and indirectly in immunomodulation of the poultry immune system. Nutritional effects seen in flocks given probiotics include increased laying and egg quality, increased daily increments, and improved feed conversion ratio (FCR). There has also been an improvement in the quality of meat. This suggests producers can improve production results through the use of probiotics. In addition to these production effects, bird immunity is improved by allowing the organism to better protect itself against pathogens and stress. The lack of accuracy in the formulation of non-European preparations needs to be further developed due to unknown interactions between probiotic bacteria strains as well as their metabolites. The versatility of probiotics and the fact that the bacteria used in their production are an integral part of animal digestive tracts make them a safe feed additives. Despite restrictions from the European Union, probiotics have potential to improve production and health within the poultry industry and beyond. The following article will review the use of probiotics in poultry production.
Collapse
|
13
|
Lan R, Chang Q, Lu Y. Effects of chitosan oligosaccharides on meat quality, muscle energy metabolism and anti-oxidant status in broilers that have experienced transport stress. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Pre-slaughter transport, exposed broilers to various stressors, which resulted in detrimental effects on animal welfare, live bodyweight loss, mortality and meat quality. There was growing interest to explore effective ways to reduce the stress response and improve meat quality of transported broilers by using dietary feed additives.
Aims
The purpose of the present study was to investigate the effect of chitosan oligosaccharides (COS) on meat quality, muscle energy metabolism and anti-oxidant status of broilers having 3-h transport stress.
Methods
In total, of 144 35-day-old broilers were randomly allocated to two dietary treatments, including a basal diet (96 broilers), or basal diet supplemented with COS at 200 mg/kg (48 broilers). There were eight broilers per cage, and 12 replication cages in the basal diet group and six replication cages in the basal diet with 200 mg/kg COS group. At the end of the experiment, after a 12-h fast, broilers in the basal diet group were randomly divided into two groups, with six replication cages in each group; then, the broilers were transported as per the following protocols: broilers in the basal diet group (CON group) were without transport stress; broilers in the basal diet group with 3 h of transport stress (TS group), and broilers in the basal diet with 200 mg/kg COS supplementation and 3 h of transport stress (TSC group). The serum corticosterone concentration, serum, liver and muscle anti-oxidant status, as well as meat quality and muscle energy metabolism were analysed.
Key results
Compared with the CON group, TS group showed increased bodyweight loss, serum corticosterone concentration, breakdown of muscle glycogen, increased muscle lactate dehydrogenase activity, as well as some changes of body anti-oxidant status (higher serum, liver and muscle MDA concentrations, lower serum SOD and GSH-Px, liver SOD and CAT, and lower muscle SOD, GSH-Px, and CAT activity), accompanied with lower pH45min and pH24h. Nevertheless, compared with the TS group, dietary COS supplementation reduced bodyweight loss, decreased muscle MDA concentration, increased muscle SOD and CAT activity, and was accompanied with improving pH24h.
Conclusions
The results suggested that the positive effects of dietary COS supplementation in maintaining meat quality were mainly due to the improved muscle anti-oxidant status.
Implications
Dietary supplementation with 200 mg/kg COS could serve as a beneficial and effective way to alleviate transport-impaired meat quality of broilers.
Collapse
|
14
|
Brito CO, Ribeiro Junior V, Del Vesco AP, Tavernari FDC, Calderano AA, Silva CM, Maciel JTDL, Azevedo MSPD. Metabolizable energy and nutrient digestibility of shrimp waste meal obtained from extractive fishing for broilers. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|