1
|
Huang Z, Fu Z, Wang J, Yang Z, Wang J, Yu J, Wang Z, Yang H. Effects of dietary supplementation levels of vitamin A and vitamin D 3 on growth performance, jejunal function, and tibia development in goslings from 1 to 28 days of age. Poult Sci 2025; 104:104780. [PMID: 40127567 PMCID: PMC11980002 DOI: 10.1016/j.psj.2025.104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 03/26/2025] Open
Abstract
This study explored the interaction effects of dietary Vitamin A (VA) and Vitamin D3 (VD3) on growth performance, jejunal function, and tibia development in goslings, aiming to identify any synergistic outcomes that may reshape nutritional strategies for geese production. A total of 540 one-day-old male Jiangnan White goslings with similar body weight (82 ± 5 g) were randomly assigned into 9 treatments with five replicate pens per treatment and 12 birds per pen. The bird trial employed a 3 × 3, two-factorial treatment with three levels of VA (5000, 7000, and 9000 IU/kg) and three levels of VD3 (1000, 1500, and 2000 IU/kg) from one to 28 days of age. Main effects analysis indicated that birds fed 7000 IU/kg VA exhibited the highest ADG, BW, jejunal maltase activity and IL-10 content (P < 0.05), while 9000 IU/kg VA had the highest SOD activity and content of IL-6 and TNF-α in jejunal mucosa (P < 0.05). Both 7000 IU/kg or 9000 IU/kg VA increased the jejunal IL-1β content, relative expression of tight junction protein 1 (TJP1) mRNA, tibia defatted weight and ash weight (P < 0.05). Birds fed 2000 IU/kg VD3 exhibited the highest ADFI, while both 1500 or 2000 IU/kg VD3 increased jejunal maltase activity, and tibia ash content (P < 0.05). An interaction between VA and VD3 on ADFI, F/G, jejunal maltase activity, mucosal immune factors (IL-1β, IL-6, IL-10, TNF-α), tibia ash content, and bone morphogenetic protein-2 (BMP-2) expression. A simple effects analysis revealed that at a 5000 IU/kg VA, adding 1000 IU/kg VD3 decreased IL-1β, IL-6, TNF-α (P < 0.05). At a 7000 IU/kg VA, adding 1500 or 2000 IU/kg VD3 decreased TNF-α, and increased jejunal maltase activity(P < 0.05). At a 9000 IU/kg VA, adding 1000 IU/kg VD3 decreased ADFI, F/G, jejunal maltase activity, tibia ash, and BMP-2, while IL-1β, IL-6, and TNF-α increased (P < 0.05). At a 9000 IU/kg VA, adding 2000 IU/kg VD3 increased IL-10 (P < 0.05). At a 1000 IU/kg VD3, adding 5000 IU/kg VA increased F/G, jejunal maltase activity and IL-10, while decreased IL-1β, IL-6, TNF-α (P < 0.05), and adding 9000 IU/kg VA decreased tibia ash and BMP-2 (P < 0.05). At 1500 or 2000 IU/kg VD3, adding 7000 IU/kg VA increased jejunal maltase activity, IL-10 (P < 0.05). At a 2000 IU/kg VD3, adding 9000 IU/kg VA increased IL-6, and TNF-α (P < 0.05). In summary, a dietary level of 7000 IU/kg of VA and 2000 IU/kg of VD3 can be a balanced combination to optimize feed intake and conversion, jejunal function, and tibia mineralization, consequently enhancing growth performance in goslings.
Collapse
Affiliation(s)
- Zixin Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenming Fu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Jun Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Yin JX, Huang YY, Nguyen MT, Si XM, Huang YQ, Chen W, Zhang HY. Tibial adaptations to dietary 25-hydroxyvitamin D 3 supplementation under two distinct vitamin regimens in young ducks. Poult Sci 2025; 104:105145. [PMID: 40245539 PMCID: PMC12032329 DOI: 10.1016/j.psj.2025.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Tibia disorders in modern ducks are frequently associated with rapid weight gain and compromised bone quality, which is defined as the structural and material properties of bone tissue that determines its strength and fracture resistance. These factors significantly increase the risk of fractures and chronic pain. Studies suggest that 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolite, effectively addresses bone disorders, potentially depending on dietary vitamin regimens, which are determined by the amount and ratio of vitamins in the diet. This study used a 2 × 2 factorial design to evaluate the effects of two vitamin regimens (regular and high) with or without exogenous 25-OH-D3 (0.069 mg/kg) on leg health and tibia quality in meat ducks (1-14 d). The high-vitamin regimen contained greater amounts of all vitamins except biotin and significantly enhanced ash content, tibial microstructure, fracture load, and reduced tibial dyschondroplasia (TD) scores (P < 0.05) compared to the regular regimen, despite no impact on growth performance or tibia length, weight, and diameter (P > 0.05). Additionally, dietary 25-OH-D3 supplementation increased weight gain (P < 0.05), improved bone quality, and strengthened bone formation and resorption processes. Notably, under the regular vitamin regimen, 25-OH-D3 reduced TD scores and enhanced weight gain, tibia mechanical properties, and the serum content of procollagen type I N-terminal propeptide (PN1P) that a marker of bone formation (all P < 0.05). However, these effects were diminished in ducks fed the high-vitamin diet. There were some interactions that were noticed regarding serum 25-OH-D3 content, trabecular area, tibia fracture load, and PN1P levels in the present study (P < 0.05). In conclusion, the biochemical effects of 25-OH-D3 were influenced by the baseline levels of dietary vitamins, a high-vitamin diet or treatment with 25-OH-D3 in a regular vitamin diet improved bone quality and reduced tibial dyschondroplasia by enhancing bone formation.
Collapse
Affiliation(s)
- J X Yin
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - Y Y Huang
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - Minh Tu Nguyen
- Department of Agriculture and Forestry, Hue University, Hue, 49000, Vietnam
| | - X M Si
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - Y Q Huang
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - W Chen
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China
| | - H Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Henan, 450046, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium.
| |
Collapse
|
3
|
Tonissen S, Emmert BJ, Schober JM, Oluwagbenga EM, Karcher DM, Fraley GS. Pulsed alternating wavelength system lighting does not negatively impact production or welfare but reduces dopamine activity and may improve bone growth in grow-out Pekin ducks: Effects of PAWS lighting on meat ducks. Poult Sci 2025; 104:104853. [PMID: 39923454 PMCID: PMC12011098 DOI: 10.1016/j.psj.2025.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
The production and welfare of Pekin ducks can be affected by the lighting type they are housed under. There is no standard lighting system in industry and little data evaluating effects of different light systems on duck production and welfare. Pulsed Alternating Wavelength System (PAWS) is a novel LED technology that delivers multiple wavelengths of light in pulsating patterns. This study aimed to determine the effects of PAWS on brain serotonin turnover and skeletal quality in ducks. Ducks housed under PAWS were hypothesized to have lower brain serotonin turnover and equal bone quality compared to those housed under control lights (fluorescent with digital ballasts, 4500K, ∼40 lux). Ducks were placed in floor pens under PAWS or control lighting (1200 ducks/pen, n = 4 pens/treatment) at day of hatch until processing at 30 days of age (DOA). Body weights and feed intake were monitored weekly. Brains, femurs, tibiae, and humeri were collected on days 7, 14, 21 and 29 (n = 6 ducks/age/lighting type). Brain serotonin and metabolites were measured. Bone length, width, breaking strength, and ash were determined. Serotonin data were analyzed using 2-way ANOVA for age and lighting treatment with a post-hoc Fisher's LSD test. Bone data were analyzed with independent t-tests between treatments within each age. Ducks housed under PAWS were heavier by 29 DOA than controls (P < 0.001) with no differences in feed conversion. Brain analyses revealed no differences in serotonin turnover between lighting types. Early interstitial growth of PAWS femur and tibia was increased (P < 0.05), and PAWS femurs had increased bone mineral content at 29 DOA (P = 0.001). At 29 DOA, the PAWS humeri were wider than controls (P = 0.025) and had increased geometrical bone mechanical properties (P < 0.003), but no differences in breaking stress were evident. Results suggest that PAWS may have benefits for production traits and skeletal quality, however, a complete understanding of the welfare effects need further study.
Collapse
Affiliation(s)
- S Tonissen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - B J Emmert
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - J M Schober
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - E M Oluwagbenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - D M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - G S Fraley
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Yang Z, Xi Y, Qi J, Li L, Bai L, Zhang J, Lv J, Li B, Liu H. Genome-wide association studies reveal the genetic basis of growth and carcass traits in Sichuan Shelduck. Poult Sci 2024; 103:104211. [PMID: 39216264 PMCID: PMC11402601 DOI: 10.1016/j.psj.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
China has abundant local duck resource populations, and evaluating the characteristics of these breeds will help improve development and utilization. In this study, we conducted the first investigations of growth and slaughter performance on Sichuan Shelduck (n = 240), an endangered duck local breed. The average body weight is 1497.91 g at 90 d of age. According to the growth curve through data recorded every 2 wk, we observed a low relative growth rate (RGR) for the early growth stage. The RGR shows a decreasing trend with age increasing in the stage from 0 to 56 d of age. The SNP-based heritability estimation showed the growth rate has a relatively high heritability, indicating high genetic stability for this trait. In the correlation analysis, the percentage of leg muscle is positively correlated with the absolute growth rate (AGR) at 28 to 42 d of age, whereas it is negatively correlated with the earlier stages, exhibiting a time-specific correlation result. Additionally, genome-wide association studies (GWAS) identified PCSK6, TOX2, and TOMM7 as potential candidate genes influencing AGR (42-56) and AGR (56-90), while the candidate genes of slaughter traits were PTP4A2, FAM110B, TOX, UBXN2B, and FCHSD2. These results provide an important reference for further understanding the genetic basis of growth and meat production performance of Sichuan Shelduck.
Collapse
Affiliation(s)
- Zhao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jun Zhang
- Rural Revitalization Development Service Centre, Zigong, China
| | - Jia Lv
- Rural Revitalization Development Service Centre, Zigong, China
| | - Bo Li
- Farming Service Centre, Rong County, Zigong, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China.
| |
Collapse
|
5
|
Xiao X, Yang H, Wan X, Wang Z. Effects of dietary supplementation of vitamin A on the tibia quality of goslings. Anim Biosci 2024; 37:1603-1613. [PMID: 38665078 PMCID: PMC11366536 DOI: 10.5713/ab.23.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE This study was conducted to evaluate the effect of dietary supplementation of vitamin A (VA) on the tibial growth, calcium (Ca) and phosphorus (P) metabolism, VA, and vitamin D (VD) deposition, and associated gene expression in goslings. METHODS A total of 180 healthy, 1-day-old male goslings were randomly divided into 3 treatment groups (0, 9,000, and 15,000 IU VA/kg), with 6 replicates containing 10 goslings each. They were weighed and sampled on days 14, 28, 42, 56, and 70. RESULTS No addition of VA reduced VA content in the serum and liver of goslings, and supplementation of 15,000 IU/kg VA increased VA content from day 14 (p<0.05). The trend of VA concentration in the serum and liver was in line with the relative mRNA expression of retinoic acid receptor β in the jejunal mucosa. In both no addition of VA and supplementation of 15,000 IU/kg VA reduced 25-hydroxycholecalciferol (25-OH-VD3) content in the serum and VD content in the liver (p<0.05). From day 28, no addition of VA or supplementation of 15,000 IU/kg VA had a negative effect on tibia length, strength, and Ca, P, and ash content in goslings (p<0.05). Tibia P content was lower in the supplementation of 15,000 IU/kg VA group than in the no addition of VA group (p<0.05). No addition of VA or supplementation of 15,000 IU/kg VA had the most effect on early serum parathyroid hormone (PTH) levels in goslings (p<0.05). The effect of no addition of VA on the bone Gla protein (BGP) content of goslings started from day 14 (p<0.05). The relative mRNA expression of bone Gla-protein (BGLAP) and bone morphogenetic protein 4 (BMP4) in the liver and jejunal mucosa was decreased by either no addition of VA or supplementation of 15,000 IU/kg VA (p<0.05). CONCLUSION Both no addition of VA and supplementation of 15,000 IU/kg VA affected the mineralization process of the bone, and ultimately reduced tibial quality.
Collapse
Affiliation(s)
- Xia Xiao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, Jiangsu 224002, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoli Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
6
|
Gu W, Hou L, Bao Q, Xu Q, Chen G. Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism. Animals (Basel) 2024; 14:2281. [PMID: 39123807 PMCID: PMC11311038 DOI: 10.3390/ani14152281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause tibial growth plate (TGP) chondrodysplasia in chickens, tibial damage caused by T-2 toxin in geese has not been fully demonstrated. This study aims to investigate the adverse effects of T-2 toxin on tibial bone development, bone quality, chondrocyte differentiation, and bone metabolism. Here, forty-eight one-day-old male Yangzhou goslings were randomly divided into four groups and daily gavaged with T-2 toxin at concentrations of 0, 0.5, 1.0, and 2.0 mg/kg body weight for 21 days, respectively. The development of gosling body weight and size was determined by weighing and taking body measurements after exposure to different concentrations of T-2 toxin. Changes in tibial development and bone characteristics were determined by radiographic examination, phenotypic measurements, and bone quality and composition analyses. Chondrocyte differentiation in TGP and bone metabolism was characterized by cell morphology, tissue gene-specific expression, and serum marker levels. Results showed that T-2 toxin treatment resulted in a lower weight, volume, length, middle width, and middle circumference of the tibia in a dose-dependent manner (p < 0.05). Moreover, decreased bone-breaking strength, bone mineral density, and contents of ash, Ca, and P in the tibia were observed in T-2 toxin-challenged goslings (p < 0.05). In addition, T-2 toxin not only reduced TGP height (p < 0.05) but also induced TGP chondrocytes to be disorganized with reduced numbers and indistinct borders. As expected, the apoptosis-related genes (CASP9 and CASP3) were significantly up-regulated in chondrocytes challenged by T-2 toxin with a dose dependence, while cell differentiation and maturation-related genes (BMP6, BMP7, SOX9, and RUNX2) were down-regulated (p < 0.05). Considering bone metabolism, T-2 toxin dose-dependently and significantly induced a decreased number of osteoblasts and an increased number of osteoclasts in the tibia, with inhibited patterns of osteogenesis-related genes and enzymes and increased patterns of osteoclast-related genes and enzymes (p < 0.05). Similarly, the serum Ca and P concentrations and parathyroid hormone, calcitonin, and 1, 25-dihydroxycholecalciferol levels decreased under T-2 toxin exposure (p < 0.05). In summary, 2.0 mg/kg T-2 toxin significantly inhibited tibia weight, length, width, and circumference, as well as decreased bone-breaking strength, density, and composition (ash, calcium, and phosphorus) in 21-day-old goslings compared to the control and lower dose groups. Chondrocyte differentiation in TGP was delayed by 2.0 mg/kg T-2 toxin owing to cell apoptosis. In addition, 2.0 mg/kg T-2 toxin promoted bone resorption and inhibited osteogenesis in cellular morphology, gene expression, and hormonal modulation patterns. Thus, T-2 toxin significantly inhibited tibial growth and development with a dose dependence, accompanied by decreased bone geometry parameters and properties, hindered chondrocyte differentiation, and imbalanced bone metabolism.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
| | - Lie Hou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Animal Husbandry Extension Station, Yinchuan 750001, China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Lu Y, Wei B, Yang Q, Han X, He X, Tao Q, Jiang S, Xu M, Bai Y, Zhang T, Bai L, Hu J, Liu H, Li L. Identification of candidate genes affecting the tibia quality in Nonghua duck. Poult Sci 2024; 103:103515. [PMID: 38350390 PMCID: PMC10875613 DOI: 10.1016/j.psj.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
The skeleton is a vital organ providing structural support in poultry. Weakness in bone structure can lead to deformities, osteoporosis, cage fatigue, and fractures, resulting in economic losses. Research has substantiated that genetic factors play a significant role in influencing bone quality. The discovery of genetic markers associated with bone quality holds paramount importance for enhancing genetic traits related to the skeletal system in poultry. This study analyzed nine phenotypic indicators of tibia quality in 120-day-old ducks. The phenotypic correlation revealed a high correlation among diameter, Perimeter, and weight (0.69-0.78), and a strong correlation was observed between toughness and breaking strength (0.62). Then, we conducted a genome-wide association analysis of the phenotypic indicators to elucidate the genetic basis of tibial quality in Nonghua ducks. Among the 11 candidate genes that were annotated, TAPT1, BST1, and STIM2 were related to the diameter indicator, ZNF652, IGF2BP1, CASK, and GREB1L were associated with the weight and toughness indicators. RFX8, GLP1R, and DNAAF5 were identified for ash, calcium, and phosphorus content, respectively. Finally, KEGG and GO analysis for annotated genes were performed. STIM2 and BST1 were enriched into the Calcium signalling pathway and Niacin and nicotinamide metabolic pathway, which may be key candidate genes affecting bone quality phenotypes. Gene expression analysis of the candidate genes, such as STIM2, BST1, TAPT1, and CASK showed higher expression levels in bones compared to other tissues. The obtained results can contribute to new insights into tibial quality and provide new genetic biomarkers that can be employed in duck breeding.
Collapse
Affiliation(s)
- Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Bin Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 613000, China.
| |
Collapse
|
8
|
Zhang H, Wang Y, Wang Y, Wei B, Wang L, Nguyen MT, Lv X, Huang Y, Chen W. Fermented calcium butyrate supplementation in post-peak laying hens improved ovarian function and tibia quality through the "gut-bone" axis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:350-362. [PMID: 38362518 PMCID: PMC10867563 DOI: 10.1016/j.aninu.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Accepted: 10/15/2023] [Indexed: 02/17/2024]
Abstract
The compromised egg quality and leg abnormality during the end of the laying cycle (after 40 weeks) have been leading to poor animal welfare and substantial economic losses. Therefore, the effects of fermented calcium (Ca) butyrate, produced by fermentation by Clostridium butyricum, on production, eggshell quality, and tibial property of hens were explored. A total of 192 Hy-line brown laying hens at 50-week-old were assigned to a basal diet or the basal diet with 300 mg/kg of the fermented Ca butyrate from 50 to 58 weeks of age. Each treatment had 6 replicates with 16 hens each. The diet supplemented with 300 mg/kg fermented Ca butyrate notably increased egg weight, ovarian follicle number, and eggshell strength (P = 0.072) as compared to the basal diet, which were associated with cytokine secretion, toll-like receptor signaling pathways, and intestinal immunity based on the RNA-seq data from the granulosa. Dietary Ca butyrate inclusion decreased the expression of ileal tumor necrosis factor-alpha and serum pro-inflammatory cytokine concentration, as well as increased the content of serum immunoglobulin A when compared to the basal diet (both P < 0.05). The birds that received fermented Ca butyrate diets exhibited higher villus height (P < 0.05) and upregulated expression of tight junction proteins, whereas it did not alter the composition of cecal microbiota (P > 0.05). In addition, the diet with fermented Ca butyrate reduced the number of osteoclasts in the proximal tibia and the level of C-terminal cross-linked telopeptide of type I collagen, a bone resorption marker (P < 0.05), whereas it tended to increase the concentration of the procollagen type I N-terminal propeptide that reflects bone formation marker in serum. Moreover, the layers fed fermented Ca butyrate diets possessed higher (P < 0.05) bone area and trabecular number of the proximal tibia, yield load, and ultimate load than those that consumed basal diets. Collectively, dietary fermented Ca butyrate supplementation in post-peak layer diets improved the ovarian function and tibia quality, which might be related to enhancing intestinal integrity and consequently decreasing inflammation mediated bone resorption.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Yongshuai Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilu Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Wei
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minh Tu Nguyen
- Department of Agriculture and Forestry, Hue University, Hue, 49000, Viet Nam
| | - Xiangyun Lv
- Charoen Pokphand Group Co., Ltd. Zhumadian, 463000, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
9
|
Wang L, Wang Z, Luo P, Bai S, Chen Y, Chen W. Dietary Zinc Glycine Supplementation Improves Tibia Quality of Meat Ducks by Modulating the Intestinal Barrier and Bone Resorption. Biol Trace Elem Res 2023; 201:888-903. [PMID: 35320516 DOI: 10.1007/s12011-022-03207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/15/2022] [Indexed: 01/21/2023]
Abstract
Leg problems characterized by gait abnormity and bone structure destruction are associated with a high risk of fractures and continuous pain in poultry. Zinc (Zn) acts a pivotal part in normal bone homeostasis and has proven to be highly effective in alleviating leg problems. Therefore, the effects of graded concentration of Zn on bone quality were evaluated in this study. A total of 512 1-d-old male ducks were fed 4 basal diets added 30 mg/kg Zn, 60 mg/kg Zn, 90 mg/kg Zn, and 120 mg/kg Zn as Zn glycine for 35 d. Tibia Zn content, ash percentage, and breaking strength linearly increased with dietary elevated Zn level (P < 0.05). Broken-line analysis revealed that the recommended level of Zn from Zn glycine was 55.13 mg/kg and 64.48 mg/kg based on tibia ash and strength, respectively. To further confirm the role of dietary Zn glycine addition on bone characteristics, data from birds fed either 60 mg/kg Zn as Zn sulfate (ZnSO4), 30 mg/kg Zn, or 60 mg/kg Zn in the form of Zn glycine indicated that birds given 60 mg/kg Zn from Zn glycine diet exhibited higher tibia ash, strength, and trabecular volume compared to those fed the 30 mg/kg Zn diet (P < 0.05). Dietary 60 mg/kg Zn as Zn glycine addition decreased intestinal permeability, upregulated the mRNA expression of tight junction protein, and increased the abundance of Lactobacillus and Bifidobacterium, which was companied by declined the level of inflammatory cytokines in both the ileum and bone marrow. Regarding bone turnover, the diet with 60 mg/kg Zn from Zn glycine induced osteoprotegerin expression and thus decreased osteoclast number and serum bone resorption biomarker levels including serum tartrate-resistant acid phosphatase activity and C-terminal cross-linked telopeptide of type I collagen level when compared to 30 mg/kg Zn diet (P < 0.05). Except for the upregulation in runt-related transcription factor 2 transcription, the experimental treatments did not apparently change the bone formation biomarker contents in serum. Additionally, Zn glycine displayed a more efficient absorption rate, evidenced by higher serum Zn level, and thus had potentially greater a protective role in the intestine barrier and tibia mass as compared to ZnSO4. Collectively, the dietary supplementation of 60 mg/kg in the form of Zn glycine could suppress bone resorption mediated by osteoclast and consequently improve tibial quality of meat ducks, in which enhanced intestinal integrity and optimized gut microbiota might be involved.
Collapse
Affiliation(s)
- Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ziyang Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Xin Q, Ma N, Jiao H, Wang X, Li H, Zhou Y, Zhao J, Lin H. Dietary Energy and Protein Levels During the Prelay Period on Production Performance, Egg Quality, Expression of Genes in Hypothalamus-Pituitary-Ovary Axis, and Bone Parameters in Aged Laying Hens. Front Physiol 2022; 13:887381. [PMID: 35574467 PMCID: PMC9096247 DOI: 10.3389/fphys.2022.887381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023] Open
Abstract
Nutrition during the pre-lay period takes effect on the production performance in the laying flock. This study evaluated the effects of dietary energy and protein levels in pre-lay diet on performance during the whole laying period and the egg quality, bone quality, and mRNA expression of hypothalamus-pituitary-gonadal (HPG) axis-related genes of hens at the end of the laying cycle. A total of 1,856 15-wk old Hy-Line brown pullets were randomly assigned to one of the four dietary treatments: using a 2 × 2 factorial arrangement with 2 energy levels (2,700 and 2,800 kcal/kg ME, respectively) and 2 protein levels (15 and 16.5% CP, respectively). Pullets were fed ad libitum from 15 to 20 wk and from 20 wk onward, fed with a similar laying diet till 72 wk of age. At 72 wk, the expression of genes in the hypothalamus, pituitary, ovarian, and follicles and bone quality was evaluated. At 72wk, there were no differences in production performance, BW, organ index, and ovarian parameters among the dietary treatments. High-CP diet increased the egg shape index and eggshell thickness (p < 0.05), but the eggshell breaking strength, Haugh unit, and albumen height did not differ among the treatments. Neither dietary energy nor protein level took an effect of bone quality. Low-energy diet increased the mRNA expression of gonadotropin-releasing hormone-1 (GnRH-1) in the hypothalamus (p < 0.05). The mRNA expression level of estrogen receptor-1 (ESR-1) in the hypothalamus and ovary was elevated by the 2,700 ME-15%CP diet (p < 0.05). The expression of cytochrome family 17 subfamily A polypeptide 1 (CYP17A1) in the large white follicle (LWF), small yellow follicles (SYF) and dominant follicle (DF) was decreased by the 2,800 kcal/kg diet (p < 0.05). These results indicate that the prelay diet had no influence on the production performance but had minimal effect on the eggshell characteristics and bone parameters. These results suggest that the energy and protein level of the prelay diet changes the expression of HPG axis-related genes of hens around the end of the laying cycle without changing the circulating sex hormone profile. The effect of prelay diet on the endocrinal adjustment at the end of the laying cycle needs to be investigated further.
Collapse
Affiliation(s)
- Qian Xin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ning Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Zhang H, Qin S, Zhu Y, Zhang X, Du P, Huang Y, Michiels J, Zeng Q, Chen W. Dietary Resistant Starch From Potato Regulates Bone Mass by Modulating Gut Microbiota and Concomitant Short-Chain Fatty Acids Production in Meat Ducks. Front Nutr 2022; 9:860086. [PMID: 35369099 PMCID: PMC8970273 DOI: 10.3389/fnut.2022.860086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023] Open
Abstract
Gut microbiota interfered with using prebiotics may improve bone mass and alleviate the onset of bone problems. This study aimed to investigate the beneficial effect of resistant starch from raw potato starch (RPS) on bone health in meat ducks. Response to the dietary graded level of RPS supplementation, both tibia strength and ash were taken out linear and quadratic increase and positively correlated with increased propionate and butyrate levels in cecal content. Moreover, further outcomes of gut microbiota and micro-CT analysis showed the beneficial effect of RPS on bone mass might be associated with higher Firmicutes proportion and the production of short-chain fatty acids (SCFAs) in the cecum. Consistent with improving bone mass, SCFAs promoted phosphorus absorption, decreased the digestive tract pH, and enhanced intestinal integrity, which decreased the expression of pro-inflammatory genes in both gut and bone marrow, and consequently depressed osteoclastic bone resorption mediated by inflammatory cytokines. These findings highlight the importance of the "gut-bone" axis and provide new insight into the effect of prebiotics on bone health.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China.,Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Simeng Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Xiangli Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Du
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yanqun Huang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Quifeng Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wen Chen
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Multimodal characterization of the bone-implant interface using Raman spectroscopy and nanoindentation. Med Eng Phys 2020; 84:60-67. [DOI: 10.1016/j.medengphy.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
13
|
Wang H, Gao W, Huang L, Shen JJ, Liu Y, Mo CH, Yang L, Zhu YW. Mineral requirements in ducks: an update. Poult Sci 2020; 99:6764-6773. [PMID: 33248592 PMCID: PMC7705048 DOI: 10.1016/j.psj.2020.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mineral nutrition plays a critical role in growth and bone mineralization in meat ducks as well as reproductive performance in duck layers and duck breeders. In addition to improving production performance parameters, minerals are also essential to support several enzymatic systems to enhancing antioxidant ability and immune function. This review explores the biological function and metabolism of minerals in the body, as well as mineral feeding strategy of various species of ducks. Topics range from mineral requirement to the physiological role of macroelements such as calcium and phosphorus and microelements such as zinc and selenium, etc. As with the improvement of genetic evolution and upgrade of rearing system in duck production, mineral requirements and electrolyte balance are urgent to be re-evaluated using sensitive biomarkers for the modern duck breed characterized by the rapid growth rate and inadequate bone development and mineralization. For duck breeders, mineral nutrition is not only required for maximal egg production performance but also for maintaining normal embryonic development and offspring's performance. Therefore, the proper amounts of bioavailable minerals need to be supplemented to maintain the mineral nutritional state of duck species during all phases of life. In addition, more positive effects of high doses microelements supplementations have been revealed for modern meat ducks subjected to various stresses in commercial production. The nutritional factors of mineral sources, supplemental enzymes, and antinutritional factors from unconventional ingredients should be emphasized to improve the effectiveness of mineral nutrition in duck feed formulation. Organic mineral sources and phytase enzymes have been adopted to reduce the antagonistic action between mineral and antinutritional factors. Therefore, special and accurate database of mineral requirements should be established for special genotypes of ducks under different rearing conditions, including rearing factors, environmental stresses and diets supplemented with organic sources, phytase and VD3.
Collapse
Affiliation(s)
- H Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - W Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - L Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - J J Shen
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Y Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - C H Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - L Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China.
| | - Y W Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China.
| |
Collapse
|