1
|
Chang Y, Guo R, Gu T, Zong Y, Sun H, Xu W, Chen L, Tian Y, Li G, Lu L, Zeng T. Integrated transcriptome and microbiome analyses of residual feed intake in ducks during high production period. Poult Sci 2024; 103:103726. [PMID: 38636203 PMCID: PMC11031780 DOI: 10.1016/j.psj.2024.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Residual feed intake (RFI) is a crucial parameter for assessing the feeding efficiency of poultry. Minimizing RFI can enhance feed utilization and reduce costs. In this study, 315 healthy female ducks were individually housed in cages. Growth performance was monitored during the high laying period, from 290 to 325 d of age. The cecal transcriptome and microbiome of 12 ducks with high RFI and 12 with low residual feed intake (LRFI) were analyzed. Regarding growth performance, the LRFI group exhibited significantly lower RFI, feed conversion ratio (FCR), and feed intake (Fi) compared to the HRFI group (p < 0.01). However, there were no significant differences observed in body weight (BW), body weight gain (BWG), and egg mass (EML) between the groups (p > 0.05). Microbiome analysis demonstrated that RFI impacted gut microbial abundance, particularly affecting metabolism and disease-related microorganisms such as Romboutsia, Enterococcus, and Megamonas funiformis. Transcriptome analysis revealed that varying RFI changed the expression of genes related to glucose metabolism and lipid metabolism, including APOA1, G6PC1, PCK1, and PLIN1. The integrated analysis indicated that host genes were closely linked to the microbiota and primarily function in lipid metabolism, which may enhance feeding efficiency by influencing metabolism and maintaining gut homeostasis.
Collapse
Affiliation(s)
- Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Rongbing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yibo Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 430064, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs; Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Biesek J, Wlaźlak S, Banaszak M, Grabowicz M. Evaluation of coffee husks in pellet bedding, performance characteristics, footpad dermatitis scoring, and meat quality of broiler ducks. Vet Res Commun 2024; 48:165-177. [PMID: 37603202 PMCID: PMC10811163 DOI: 10.1007/s11259-023-10196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
The study aimed to analyze the chemical composition of pellet bedding made of straw or coffee husks (10, 25, 50%) and the performance characteristics of broiler ducks and footpad dermatitis. During rearing, the properties of the bedding and utility features of ducks were analyzed, and the frequency of footpad dermatitis (FPD) in ducks was verified. There was a decrease in dry matter from the 28th day of rearing. The crude fiber, NDF, ADF, and nitrogen content decreased compared to fresh bedding, while phosphorus and potassium increased. The highest pH was found in the CH25 and CH50 groups in fresh bedding on day 42 and in CH50 on day 14. High adj. R2 was found due to rearing time and bedding material (0.817-0.985). The ducks' growth rate in the CH25 group was higher at week 6 than in the other groups. In CH10 and CH25 groups, higher carcass weight was found than in group C. In group CH10, a higher weight of pectoral muscles and lower wing proportion was found than in C. In CH25, a higher remains weight was shown than in C and CH50. In CH50, lower water-holding capacity in the pectoral muscles was found than in the other groups. Considering the bedding (the content of nitrogen, phosphorus, and potassium), carcass features, and meat quality (water-holding capacity, intramuscular fat, and water content), it is possible to use 10, 25 or 50% of coffee husks in straw pellets in the rearing of broiler ducks. Due to the FPD, the moisture should be lowered.
Collapse
Affiliation(s)
- Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mirosław Banaszak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Małgorzata Grabowicz
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
3
|
Liu H, Tang Q, Yan X, Wang L, Wang J, Yang Q, Wei B, Li J, Qi J, Hu J, Hu B, Han C, Wang J, Li L. Mass spectrometry-based metabolic profiling for identification of biomarkers related to footpad dermatitis in ducks. Br Poult Sci 2023; 64:577-585. [PMID: 37254666 DOI: 10.1080/00071668.2023.2214884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
1. A new assessment method for duck footpad dermatitis (FPD) evaluation was developed, combining visual and histological characters using the images and sections of 400 ducks' feet at 340 d of age. All ducks were graded as G0 (healthy), G1 (mild), G2 (moderate) and G3 (severe) according to the degree of FPD.2. To reveal the potential biomarkers in serum related to duck FPD, non-targeted metabolomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore differential metabolites in each group.3. There were 57, 91 and 210 annotated differential metabolites in groups G1, G2 and G3 compared with G0, which meant that the severity of FPD increased in line with the number of metabolites. Four metabolites, L-phenylalanine, L-arginine, L-leucine and L-lysine, were considered potential biomarkers related to FPD.4. KEGG enrichment analysis showed that the FPD was mainly involved in glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway and amino acid metabolism. These are related to production metabolism and can affect the physiological activities of ducks, which might explain the decrease in production performance.
Collapse
Affiliation(s)
- H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Q Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - X Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - L Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Q Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - B Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Dunislawska A, Pietrzak E, Bełdowska A, Siwek M. Health in poultry- immunity and microbiome with regard to a concept of one health. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
The overall concept of OneHealth focuses on health and infectious disease in the context of the relationship between humans, animals, and the environment. In poultry production, there are many opportunities to implement OneHealth by organizing work and introducing appropriate engineering solutions. It is recommended that future research directions include designing and testing solutions to improve air quality and the elimination of antibiotics in the poultry industry. For this to be possible, it is essential to understand the indigenous microbiota of poultry, which plays a crucial role in nutrients, but also restricts the growth of pathogenic organisms. In poultry production, the most important thing is disease control in the herd, high product quality, and product efficiency. Food safety is key for consumers, as some zoonoses are transmitted through the food chain. Moreover, antibiotic resistance of bacteria is becoming a growing threat. For this reason, it is essential to maintain the proper immune status in the herd. Virus disease control in poultry is based on vaccination programs and the maintenance of biosecurity. This chapter aims to present the current state of knowledge in the field of immunity and microbiome of poultry in the context of the OneHealth concept.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Elżbieta Pietrzak
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Bełdowska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
5
|
Kim HJ, Son J, Jeon JJ, Kim HS, Yun YS, Kang HK, Hong EC, Kim JH. Effects of Photoperiod on the Performance, Blood Profile, Welfare Parameters, and Carcass Characteristics in Broiler Chickens. Animals (Basel) 2022; 12:ani12172290. [PMID: 36078010 PMCID: PMC9454977 DOI: 10.3390/ani12172290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
We studied the effects of photoperiods on the growth performance, blood profile, welfare parameters, and carcass characteristics of broilers. A total of 336 male broiler chicks (Ross 308) were randomly allocated into 4 treatments (84 birds per treatment with 4 replicates), based on the following lighting regimen: 24 h continuous light (24L), 18 h continuous light (18L:6D), 8 h continuous light (8L:16D), and intermittent light (4L:2D). Body weight and feed intake of 7- and 35-day-old broilers were measured. At 5 weeks of age, 12 birds per treatment were selected for blood collection and carcass analysis. Body weight, body weight gain, and feed intake were the lowest in the 8L:16D treatment (p < 0.05). The heterophil-to-lymphocyte ratio, aspartate aminotransferase, interleukin-6, and corticosterone levels in the 24L treatment increased significantly when compared to that in the 18L:6D treatment (p < 0.05). The footpad dermatitis score was significantly lower in the 18L:6D and 8L:16D treatments than in the 24L and 4L:2D treatments (p < 0.001). There was no significant difference in the carcass and meat characteristics, except for the shear force of breast meat (Pectoralis major), which was the lowest in the 8L:16D treatment (p < 0.05). These results indicate that a photoperiod of 18 h resulted in an improvement in the performance and welfare of birds and a simultaneous decrease in stress level. However, further research is needed to establish a lighting regimen that satisfies both the productivity and welfare requirements of broilers in different feeding phases.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
| | - Jiseon Son
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
| | - Jin-Joo Jeon
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
| | - Hyun-Soo Kim
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
| | - Yeon-Seo Yun
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
| | - Hwan-Ku Kang
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
| | - Eui-Chul Hong
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea
- Correspondence: (E.-C.H.); (J.-H.K.); Tel.: +82-033-330-9555 (E.-C.H.)
| | - Ji-Hyuk Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Correspondence: (E.-C.H.); (J.-H.K.); Tel.: +82-033-330-9555 (E.-C.H.)
| |
Collapse
|
6
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
7
|
Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, Su Z, Zhang K. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express 2021; 11:140. [PMID: 34669066 PMCID: PMC8528927 DOI: 10.1186/s13568-021-01299-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
A total of 360-day-old broiler chicks were allocated into six groups in 2 (Coccidial challenge or not) × 3 (dietary treatments) factorial design. Three dietary treatments including: basic diet, basic diet plus organic acids (OAs) in drinking water, and basic diet plus OAs in the feed with and without coccidial challenge. The OAs in water or feed improved (P < 0.01) average body weight (ABW), average body weight gain (ABWG), and feed conversion ratio (FCR) as compared with the control diet during starter, grower, and whole experimental period. Coccidial challenge decreased BW, ABWG, and average feed intake (AFI), as well as resulted in poor FCR during the starter and whole experimental period (P < 0.05). Though there was no interaction between OAs supplementation and coccidial challenge, the OAs supplementation improved the overall performance with and without coccidial challenge birds on 21 d and 35 d. IgG was found higher (P = 0.03) in broilers fed OAs in feed without the coccidial challenge group. On 18 d, OAs supplementation in feed increased TNF-γ (P = 0.006), whereas the coccidial challenge decreases TNF-γ (P = 0.01) and IL-10 (P = < .0001), and increases IgM (P = 0.03), IgG (P = 0.04) and IgA (P = 0.02). On 29 d, the coccidial challenge increases IgM and IgA. On 18 d, jejunal lesion score was found significantly higher in the coccidial challenged group as compared to OAs supplementation with coccidial challenged groups on 18 d (P < 0.0001) and 29 d (P = 0.03). Crypt depth was higher, and Villus-height to Crypt depth ratio was lower in the coccidial challenge group on 18 and 29 d. The Goblet cells were found higher in the non-coccidial challenge on 18 d. After 18 d, 16S rDNA gene sequence analysis of ileal chyme has shown that coccidial challenge decreases Lactobacillus_reuteri species as compared to the non-challenged group (P = 0.02). After 29, Cyanobacteria abundance reduced (P = 0.014) in the challenged group than the non-challenged group at the phylum level. At the genus level, Lactobacillus (P = 0.036) and unidentified Cyanobacteria (P = 0.01) were found higher in the non-challenged group than the coccidial challenge group. The results indicate that the OAs supplementation showed improved responses in a pattern similar to the non-challenged control group by neutralizing the negative effects of the coccidial challenge.
Collapse
|
8
|
Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, Su Z, Zhang K. Limitation and Potential Effects of Different Levels of Aging Corn on Performance, Antioxidative Capacity, Intestinal Health, and Microbiota in Broiler Chickens. Animals (Basel) 2021; 11:ani11102832. [PMID: 34679852 PMCID: PMC8532906 DOI: 10.3390/ani11102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Corn is an important ingredient and staple food in China; thus, corn storage has a certain importance to ensure domestic food resources. Normally, corn has been stored for 3 or more years under the proper storage conditions in national barns before it is used as a feed ingredient. This study aimed to investigate the effect of different levels of aging corn (AC) on performance, antioxidative capacity, intestinal health, and microbiota in broilers. In the present study, AC grains were stored for 4 years under the proper storage conditions at the national storage facility. The results indicated that a lower level of AC diet showed improved performance and overall bird health than a higher level of AC, and comparable with a normal corn diet. However, antioxidative capacity is reduced by AC diets. Abstract Three-hundred and sixty-day-old male broilers underwent three treatments with six replicates of 20 birds per treatment. The experimental diets included NC: normal corn diet; ACL: lower level (39.6–41.24%) of AC; and ACH: a higher level (56.99–59.12%) of AC. During phase 1 (0–21 d), broilers fed on AC showed lower (p < 0.05) body weight (BW), body weight gain (BWG), and feed conversion ratio (FCR) as compared with the NC group. During phase 2 (22–42 d), the NC group and ACL group showed better (p < 0.05) BW, BWG, and FCR than the ACH group. The footpad lesion score (p = 0.05) and litter moisture percentage (p < 0.05) were found to be higher in the ACH group. During phase 1, the ACL group showed a lower level of malondialdehyde (MDA) contents (p < 0.05) in serum; moreover, catalase (CAT) (p < 0.05) and glutathione peroxidase (GSH-Px) activities (p < 0.05) were found lower in both AC-containing groups. During phase 2, CAT activity in serum was found higher (p < 0.05) in the ACH group. During phase 1, the NC group showed higher CAT (p = 0.05), GSH-Px (p < 0.05), and superoxide dismutase (SOD) activity (p = 0.03); however, it showed lower MDA (p < 0.05) and total-antioxidative capability (T-AOC) (p < 0.05) in the liver. During phase 1, in breast muscle, CAT, SOD, and T-AOC were higher (p < 0.05) in the NC group. During phase 1, total cholesterol and high-density lipoprotein were found to be lower (p < 0.05) in the ACL group. Similarly, triglyceride and low-density lipoprotein were found to be lower (p < 0.05) in the ACL group than the ACH group. During phase 1, villus height was found to be higher (p < 0.05) in the ACH group. Moreover, the goblet cell (GC) was found to be higher (p < 0.05) in the NC group than the ACL group. During phase 2, GC was found to be higher (p < 0.05) in the ACL group. In ileal digesta, during phase 1, acetic acid, propionic acid, and butyric acid (BA) levels were found to be higher (p < 0.05) in the ACL group. In cecal digesta, BA was significantly lower (p < 0.05) in the NC group.
Collapse
|
9
|
Effects of Different Swimming Pool Conditions and Floor Types on Growth Performance and Footpad Dermatitis in Indoor-Reared White Roman Geese. Animals (Basel) 2021; 11:ani11061705. [PMID: 34200474 PMCID: PMC8228599 DOI: 10.3390/ani11061705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The goose industry provides meat and down to the food and textile processing industry and is the third-largest poultry industry in Taiwan after the chicken and duck industries. After the avian influenza virus (HPAIV) pandemic in 2015, most poultry farms in Taiwan have been restricted to closed birdhouses to improve biosafety. However, indoor-raised poultry may experience footpad dermatitis problems. We studied the effects of providing a swimming pool and different floor types on the growth performance and footpad dermatitis score for indoor-reared White Roman geese to reduce the risk of footpad dermatitis. Our data indicated that the incidence of footpad dermatitis was decreased during the feeding period in geese supplied with a swimming pool. Our findings may help improve animal welfare in modern waterfowl production by having the geese express their natural behaviors with water. Abstract Footpad dermatitis (FPD) is a major foot disease in modern poultry production, and it affects both poultry health and animal welfare. It refers to inflammation and necrotizing lesions on the plantar surface of the footpads and toes. We investigated the effects of providing a swimming pool and different floor types on growth performance and FPD score in indoor-reared White Roman geese. Forty-eight male and 48 female White Roman geese were randomly allocated to pens with or without a swimming pool and with either mud or perforated plastic floor and reared from 15 to 84 days of age. Growth performance measurements included feed intake (FI), weight gain (WG), and feed conversion ratio (FCR). FI, WG, and FCR were significantly decreased at various growth periods in geese provided with a pool. Lower WG and bodyweight for the perforated plastic floor group were found at 15–28 and 28 days of age, respectively. The geese reared on the perforated plastic floors without a pool had higher FPD scores at 70 and 84 days of age than those with other rearing conditions. A higher incidence of FPD score 1 was observed in geese raised without a pool. In conclusion, providing a pool can improve footpad health in indoor-reared White Roman geese but may not benefit growth performance.
Collapse
|