1
|
Xu T, Jiang Q, Xu C, Xiao Z, Zheng X, Gu L. Exploring the effects of feeding methods on the growth and meat flavor of Wenchang chicken. Poult Sci 2025; 104:105043. [PMID: 40209466 PMCID: PMC12005278 DOI: 10.1016/j.psj.2025.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/12/2025] Open
Abstract
Wenchang chicken, renowned for its high-quality meat, is the economic meat breed in Hainan Province, China. This study compared cage-rearing (CR) and free-range (FR) groups in terms of growth performance, slaughter performance, meat quality, IMP (inosine monophosphate) content, AAs, FAs, serum lipid metabolites, and transcriptomic and metabolomic analyses. The CR group showed increased body weight, live weight, and abdominal fat but lower leg muscle percentage and breast muscle redness, suggesting flavor differences. CR chickens had higher IMP, threonine (Thr), and pentadecanoic, oleic, and linoleic acids, while glutamate (Glu) and alpha-linolenic acid were lower compared to FR. Glycine was elevated, but histidine, myristic, and tricosanoic acids were lower in CR leg muscle. Serum analysis revealed higher total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), fatty acid synthase (FAS), thyroid-stimulating hormone (TSH), leptin (LEP), and adiponectin (ADP) in the CR group. Transcriptomic and metabolomic studies identified 252 differentially expressed genes and 34 metabolites linked to metabolic pathways. In summary, CR system can improve production performance, FR system is considered more flavorful. The results can act as a theoretical basis for selecting a suitable rearing method for this unique breed.
Collapse
Affiliation(s)
- Tieshan Xu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qicheng Jiang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China
| | - Chaohua Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhepeng Xiao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China.
| |
Collapse
|
2
|
Volkova NA, Romanov MN, Vetokh AN, Larionova PV, Volkova LA, Abdelmanova AS, Sermyagin AA, Griffin DK, Zinovieva NA. Genome-Wide Association Study Reveals the Genetic Architecture of Growth and Meat Production Traits in a Chicken F 2 Resource Population. Genes (Basel) 2024; 15:1246. [PMID: 39457370 PMCID: PMC11507135 DOI: 10.3390/genes15101246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES For genomic selection to enhance the efficiency of broiler production, finding SNPs and candidate genes that define the manifestation of main selected traits is essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity traits of roosters from a chicken F2 resource population (n = 152). METHODS The population was obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits of interest and economic importance. RESULTS At the threshold value of p < 9.2 × 10-7, 83 SNPs associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and its components). Moreover, 34 SNPs were associated with a group of three or more traits, including 15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators. Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2. CONCLUSIONS The found SNPs and candidate genes can serve as genetic markers for growth and meat performance characteristics in chicken breeding in order to achieve genetic improvement in broiler production.
Collapse
Affiliation(s)
- Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anastasia N. Vetokh
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Polina V. Larionova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Ludmila A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexander A. Sermyagin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg 196601, Russia;
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| |
Collapse
|
3
|
Ren P, Zhou L, Xu Y, Chen M, Luo Z, Li J, Liu Y. Exercise Volume Provides New Insight into the Effects of Housing Systems on Chicken Body Conformation, Carcass Traits, Meat Quality, and Serum Biochemical Parameters. Animals (Basel) 2024; 14:2387. [PMID: 39199922 PMCID: PMC11350860 DOI: 10.3390/ani14162387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
This study aims to investigate the dynamic changes in daily step counts under different housing systems and further explore the effects of housing system on the body conformation, carcass traits, meat quality, and serum biochemical parameters of a Chinese indigenous chicken breed. At 60 d of age, 300 Jiuyuan Black male chickens with similar body weights in each housing system were further raised until the age of 150 d. At 90, 120, and 150 d of age, in both cage-reared and free-range systems, the top 20 chickens with the highest step counts measured using pedometers and the bottom 20 chickens with the lowest step counts were designated as the cage high-steps group (CHS), the cage low-steps group (CLS), the free-range high-steps group (FHS), and the free-range low-steps group (FLS), respectively. The results show that, at any age stage, the average daily steps (ADS) and total steps (TS) of the FHS group are significantly higher than the other three groups (p < 0.05). The TS of almost all groups showed an overall downward trend as the age increased. Increased exercise volume results in reduced shank length (90 d), breast width (90 d), and keel length (150 d) (p < 0.05). Only birds at 90 d of age from the FHS and FLS groups exhibited lower live body weight, carcass weight, half-eviscerated weight, eviscerated weight, breast muscle weight, leg muscle weight, and percentage of eviscerated weight than the CLS group (p < 0.05). Birds from the FHS group showed the highest heart weight values but the lowest abdominal fat weight values among these four groups (p < 0.05). Both the breast and leg muscle samples from the FHS group displayed higher dry matter and shear force than those from the CHS and CLS groups (p < 0.05). The FHS group displayed the lowest intramuscular fat among the four groups (p < 0.05). The creatine kinase (CK) and lactate dehydrogenase (LDH) levels in chickens of all age stages were almost observed to rise with increased physical activity. In conclusion, free-range chickens with more exercise volume exhibited an elevated heart weight and reduced abdominal fat but showed negative effects on some body measurements and carcass traits. These results can provide a theoretical basis for the selection of different housing systems for Chinese indigenous chickens.
Collapse
Affiliation(s)
- Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Li Zhou
- Yibin Academy of Agricultural Sciences, Yibin 644600, China;
| | - Yingfeng Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Meiying Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Zhengwei Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Jingjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (P.R.); (M.C.); (Z.L.)
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
4
|
Wang J, Wei W, Xing C, Wang H, Liu M, Xu J, He X, Liu Y, Guo X, Jiang R. Transcriptome and Weighted Gene Co-Expression Network Analysis for Feather Follicle Density in a Chinese Indigenous Breed. Animals (Basel) 2024; 14:173. [PMID: 38200904 PMCID: PMC10778273 DOI: 10.3390/ani14010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Feather follicle density plays an important role in appealing to consumers' first impressions when making purchasing decisions. However, the molecular network that contributes to this trait remains largely unknown. The aim of this study was to perform transcriptome and weighted gene co-expression network analyses to determine the candidate genes relating to feather follicle density in Wannan male chickens. In total, five hundred one-day-old Wannan male chickens were kept in a conventional cage system. Feather follicle density was recorded for each bird at 12 weeks of age. At 12 weeks, fifteen skin tissue samples were selected for weighted gene co-expression network analysis, of which six skin tissue samples (three birds in the H group and three birds in the L group) were selected for transcriptome analysis. The results showed that, in total, 95 DEGs were identified, and 56 genes were upregulated and 39 genes were downregulated in the high-feather-follicle-density group when compared with the low-feather-follicle-density group. Thirteen co-expression gene modules were identified. The red module was highly significantly negatively correlated with feather follicle density (p < 0.01), with a significant negative correlation coefficient of -0.72. In total, 103 hub genes from the red module were screened. Upon comparing the 103 hub genes with differentially expressed genes (DEGs), it was observed that 13 genes were common to both sets, including MELK, GTSE1, CDK1, HMMR, and CENPE. From the red module, FOXM1, GTSE1, MELK, CDK1, ECT2, and NEK2 were selected as the most important genes. These genes were enriched in the DNA binding pathway, the heterocyclic compound binding pathway, the cell cycle pathway, and the oocyte meiosis pathway. This study suggests that FOXM1, GTSE1, MELK, CDK1, ECT2, and NEK2 may be involved in regulating the development of feather follicle density in Wannan male chickens. The results of this study reveal the genetic structure and molecular regulatory network of feather follicle density in Wannan male chickens, and provide a basis for further elucidating the genetic regulatory mechanism and identifying molecular markers with breeding value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.W.); (W.W.); (C.X.); (H.W.); (M.L.); (J.X.); (X.H.); (Y.L.); (X.G.)
| |
Collapse
|
5
|
Kong F, Wu F, Liu Y, Lai N, Wang G, Shen S, Han S, Li B, Zhi Y, Chen S, Chen B. Effects of enzymolytic soybean meal on the growth performance, digestive enzyme activity, some serum indexes, carcase performance and meat quality of Rex rabbits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Fangen Kong
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Fengyang Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ningjie Lai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Guozhou Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Shuaifeng Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bin Li
- Qinhuangdao Qihao Biotechnology Co., Ltd, Qinhuangdao, China
| | - Yongwei Zhi
- Inner Mongolia Dongda Biotechnology Co., Ltd, Ordos, China
| | - Saijuan Chen
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, China
- Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Effects of Chinese yam Polysaccharides on the Muscle Tissues Development-Related Genes Expression in Breast and Thigh Muscle of Broilers. Genes (Basel) 2022; 14:genes14010006. [PMID: 36672746 PMCID: PMC9858316 DOI: 10.3390/genes14010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This experiment was conducted to evaluate the effects of dietary Chinese yam polysaccharides (CYP) on myogenic differentiation 1 (MYOD1), myogenin (MYOG), and myostatin (MSTN) mRNA expression of breast and thigh muscle tissues in broilers. A total of 360 (1-day-old, gender-balanced) crossbred broilers chicks with similar body weight (BW) were randomly distributed into four groups, with three replicates in each group and each replicate included 30 broilers. The feeding trial lasted for 48 days. Experimental broilers were fed 0.00 mg/kg basal diet (control group), 250 mg/kg, 500 mg/kg, and 1000 mg/kg CYP, respectively. The results showed that CYP250 and CYP500 groups had higher thigh muscle percentage (TMP) compared to the control group (p < 0.05). Meanwhile, the expression of MYOD1, MYOG mRNA in breast muscle tissues of CYP500 and CYP1000 groups was higher (p < 0.05), and the expression of MSTN mRNA in thigh muscle of CYP250, CYP500, and CYP1000 groups was lower than that of the control group (p < 0.05). In addition, there was no significant difference in the expression of MYOD1 mRNA in the thigh muscle tissue of each group (p > 0.05). Bivariate correlation analysis showed that the expression levels of MYOD1, MYOG, and MSTN mRNA in the thigh muscle tissue of broiler chickens in the CYP500 group were positively correlated with TMP. However, the expression of MYOG mRNA in thigh muscle tissue of the CYP1000 group was negatively correlated with TMP. In general, this study indicated that appropriate dietary CYP supplementation influenced the growth and development of thigh muscle tissue in broilers by altering TMP and muscle tissue development-related genes expression. Therefore, CYP could be used as a potential feed additive to promote the development of muscle tissues in broilers.
Collapse
|
7
|
González Ariza A, Navas González FJ, León Jurado JM, Arando Arbulu A, Delgado Bermejo JV, Camacho Vallejo ME. Data Mining as a Tool to Infer Chicken Carcass and Meat Cut Quality from Autochthonous Genotypes. Animals (Basel) 2022; 12:2702. [PMID: 36230442 PMCID: PMC9559234 DOI: 10.3390/ani12192702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The present research aims to develop a carcass quality characterization methodology for minority chicken populations. The clustering patterns described across local chicken genotypes by the meat cuts from the carcass were evaluated via a comprehensive meta-analysis of ninety-one research documents published over the last 20 years. These documents characterized the meat quality of native chicken breeds. After the evaluation of their contents, thirty-nine variables were identified. Variables were sorted into eight clusters as follows; weight-related traits, water-holding capacity, colour-related traits, histological properties, texture-related traits, pH, content of flavour-related nucleotides, and gross nutrients. Multicollinearity analyses (VIF ≤ 5) were run to discard redundancies. Chicken sex, firmness, chewiness, L* meat 72 h post-mortem, a* meat 72 h post-mortem, b* meat 72 h post-mortem, and pH 72 h post-mortem were deemed redundant and discarded from the study. Data-mining chi-squared automatic interaction detection (CHAID)-based algorithms were used to develop a decision-tree-validated tool. Certain variables such as carcass/cut weight, pH, carcass yield, slaughter age, protein, cold weight, and L* meat reported a high explanatory potential. These outcomes act as a reference guide to be followed when designing studies of carcass quality-related traits in local native breeds and market commercialization strategies.
Collapse
Affiliation(s)
- Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
- Agropecuary Provincial Centre, Diputación Provincial de Córdoba, 14071 Córdoba, Spain
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
- Institute of Agricultural Research and Training (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain
| | | | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
8
|
Yang L, Yuan F, Rong L, Cai J, Yang S, Jia Z, Li S. Transcriptomic and Metabolomic Profile Analysis of Muscles Reveals Pathways and Biomarkers Involved in Flavor Differences between Caged and Cage-Free Chickens. Foods 2022; 11:foods11182890. [PMID: 36141015 PMCID: PMC9498551 DOI: 10.3390/foods11182890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The cage-free system has gained a lot of interest in recent years because it can offer chickens more freedom and is easier to manage compared with free-range rearing systems, but few studies have focused on the effect of the cage-free rearing system on meat quality and flavor. In this study, 44 Jianghan chickens were reared in caged or cage-free systems to explore the effect of different rearing systems on meat-eating quality. Sensory evaluation of cooked muscles showed that the leg muscle aroma, juiciness, and flavor intensity significantly improved by the cage-free rearing. The cage-free hens had significantly lower body weight, abdominal fat percentage, and meat fat content, but higher meat moisture content. The cage-free group had brighter breast muscle and redder leg muscle color 24 h after slaughter. Transcriptomic and metabolomic profile analysis of the leg muscle samples showed that the cage-free rearing changed biosynthesis pathways associated with glycogen metabolism, lipid and fatty acid biosynthesis and transport, muscle cellular type, and cellular components, which were related to raw meat quality. Different rearing systems also resulted in differences in glycolipid metabolism, lipid metabolism, and altered levels of intramuscular fat content and other flavor precursors. Pathways such as glycerolipid metabolism, adipocytokine signaling, and metabonomic pathways such as linoleic acid, glycerophospholipid, arginine, proline, and β-alanine metabolism may be responsible for the meat quality and flavor change.
Collapse
Affiliation(s)
- Liubin Yang
- College of Food Sciences & Technology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yuan
- College of Food Sciences & Technology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Li Rong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Cai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Sendong Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijia Jia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2091; Fax: +86-27-8728-0408
| |
Collapse
|
9
|
Yan S, Yang C, Zhu L, Xue Y. The Potential of Understory Production Systems to Improve Laying Hen Welfare. Animals (Basel) 2022; 12:2305. [PMID: 36078025 PMCID: PMC9454577 DOI: 10.3390/ani12172305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The welfare of laying hens in cage systems is of increasing concern. Represented by the European Union's 'End the Cage Age' initiative, more and more countries have advocated cage-free farming. China, an important country for poultry farming and consumption in the world, is highly dependent on cage systems and lacks confidence in alternative (e.g., free-range) systems. In this context, using China's abundant woodland resources (including natural forests, plantations, and commercial forests) to facilitate the management of laying hens in a free-range environment may provide highly promising welfare improvement programs. On the basis of the Five Freedoms, we assess the welfare status of understory laying hen management systems with reference to the behavioural needs and preferences of laying hens and the EU standards for free-range and organic production (highest animal welfare standards in the world). The results show that the considered systems meet or even exceed these standards, in terms of key indicators such as outdoor and indoor stocking density, outdoor activity time, and food and drug use. Specifically, the systems provide sufficient organic food for laying hens without using antibiotics. They allow laying hens to avoid beak trimming, as well as to express nesting, foraging, perching, reproductive, dustbathing and other priority behaviours. The presence of roosters and higher use of woodland space allow the laying hens to achieve better feather and bone conditions, thus reducing stress and fear damage. Notably, the predation problem is not yet considered significant. Second, there is evidence that understory laying hen systems are profitable and have been welcomed and supported by farmers and governments in the southwest, south, and north of China. However, whether it can be scaled up is uncertain, and further research is needed. In addition, laying hens in this management system face various risks, such as foot injury, parasitism, and high dependence on consumer markets, which must be considered. Overall, agro-forestry, or accurately, understory poultry raising, provides opportunities and possibilities for free-range laying hens and welfare improvement in China and other countries.
Collapse
Affiliation(s)
- Shaocong Yan
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China
| | - Chenyujing Yang
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China
| | - Lei Zhu
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China
| | - Yongji Xue
- School of Economics and Management, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
González Ariza A, Navas González FJ, Arando Arbulu A, León Jurado JM, Delgado Bermejo JV, Camacho Vallejo ME. Variability of Meat and Carcass Quality from Worldwide Native Chicken Breeds. Foods 2022; 11:1700. [PMID: 35741898 PMCID: PMC9223061 DOI: 10.3390/foods11121700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
The present research aimed to determine the differential clustering patterns of carcass and meat quality traits in local chicken breeds from around the world and to develop a method to productively characterize minority bird populations. For this, a comprehensive meta-analysis of 91 research documents that dealt with the study of chicken local breeds through the last 20 years was performed. Thirty-nine traits were sorted into the following clusters: weight-related traits, histological properties, pH, color traits, water-holding capacity, texture-related traits, flavor content-related nucleotides, and gross nutrients. Multicollinearity problems reported for pH 72 h post mortem, L* meat 72 h post mortem, a* meat 72 h post mortem, sex, firmness, and chewiness, were thus discarded from further analyses (VIF < 5). Data-mining cross-validation and chi-squared automatic interaction detection (CHAID) decision tree development allowed us to detect similarities across genotypes. Easily collectable trait, such as shear force, muscle fiber diameter, carcass/pieces weight, and pH, presented high explanatory potential of breed variability. Hence, the aforementioned variables must be considered in the experimental methodology of characterization of carcass and meat from native genotypes. This research enables the characterization of local chicken populations to satisfy the needs of specific commercial niches for poultry meat consumers.
Collapse
Affiliation(s)
- Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
- Institute of Agricultural Research and Training (IFAPA), 14004 Cordoba, Spain;
| | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
| | | | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Cordoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
| | | |
Collapse
|
11
|
Assessment of the spoilage microbiota in minced free-range chicken meat during storage at 4 C in retail modified atmosphere packages. Food Microbiol 2021; 99:103822. [PMID: 34119107 DOI: 10.1016/j.fm.2021.103822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
This study assessed the evolution of spoilage microbiota in association with the changes in pH and concentrations of lactic and acetic acids in retail oxygen-free modified atmosphere (30:70 CO2/N2) packages (MAP) of minced free-range chicken meat during storage at 4 °C for 10 days. MAP retarded growth of spoilage lactic acid bacteria (LAB) below 6.5 log cfu/g and fully suppressed growth of pseudomonads, enterobacteria, enterococci, staphylococci and yeasts. Two distinct Latilactobacillus sakei strain biotypes were predominant and Leuconostoc carnosum, Carnobacterium divergens, Latilactobacillus fuchuensis and Weissella koreensis were subdominant at spoilage. The chicken meat pH ranged from 5.8 to 6.1. l-lactate (832 mg/100 g on day-0) decreased slightly on day-7. d-lactate remained constantly below 20 mg/100 g, whereas acetate (0-59 mg/100 g) increased 5-fold on day-7. All MAP samples developed off-odors on day-7 and a strong 'blown-pack' sulfur-type of spoilage on day-10. However, neither the predominant Lb. sakei nor other LAB or gram-negative isolates formed H2S in vitro, except for C. divergens.
Collapse
|
12
|
Pathophysiological Changes in Female Rats with Estrous Cycle Disorder Induced by Long-Term Heat Stress. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4701563. [PMID: 32685488 PMCID: PMC7320282 DOI: 10.1155/2020/4701563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
High-temperature exposure is detrimental to women's reproductive health; however, the impact caused by long-term high temperature is not comprehensive, and a stable model of estrous cycle disorder induced by a high temperature is yet lacking. Herein, we aimed to establish a stable and effective model of estrous cycle disorder in female rats induced by long-term heat stress to study its physiological and pathological characteristics and explore the underlying mechanism. In the present study, female Sprague-Dawley rats with normal estrous cycles were exposed to the temperature of 38 ± 0.5°C, relative humidity (RH) of 55 ± 5% (2 h/d, 1 time/d) hot cabin at more than 90 days. Consequently, after long-term heat stress, no difference was detected in body weight and rectal temperature, but the estrus cycle was prolonged, the uterine organ index was increased, pathological changes occurred, the increase latitude of stress hormones heat shock protein 70 (Hsp70) and corticosterone (CORT) decreased, estradiol (E2) and luteinizing hormone (LH) levels decreased, follicle stimulating hormone (FSH) and prolactin (Prl) levels increased, gonadotropin-releasing hormone (GnRH) and thyroid hormone (T4) showed no difference, and insulin (INS) decreased significantly. Moreover, the mRNA expression of the sex hormone receptor in the uterus and ovary was altered. Therefore, the estrous cycle disorder in female rats can be induced by regular heat stress for 90 days, which can be considered the pioneer method. Subsequently, prominent physiological and pathological characteristics and disruption in the hypothalamic-pituitary-gonadal (HPG) axis were noted.
Collapse
|
13
|
Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019; 20:863. [PMID: 31729950 PMCID: PMC6858653 DOI: 10.1186/s12864-019-6221-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Intramuscular fat (IMF) is one of the most important factors positively associated with meat quality. Triglycerides (TGs), as the main component of IMF, play an essential role in muscle lipid metabolism. This transcriptome analysis of pectoralis muscle tissue aimed to identify functional genes and biological pathways likely contributing to the extreme differences in the TG content of broiler chickens. Results The study included Jingxing-Huang broilers that were significantly different in TG content (5.81 mg/g and 2.26 mg/g, p < 0.01) and deposition of cholesterol also showed the same trend. This RNA sequencing analysis was performed on pectoralis muscle samples from the higher TG content group (HTG) and the lower TG content group (LTG) chickens. A total of 1200 differentially expressed genes (DEGs) were identified between two groups, of which 59 DEGs were related to TG and steroid metabolism. The HTG chickens overexpressed numerous genes related to adipogenesis and lipogenesis in pectoralis muscle tissue, including the key genes ADIPOQ, CD36, FABP4, FABP5, LPL, SCD, PLIN1, CIDEC and PPARG, as well as genes related to steroid biosynthesis (DHCR24, LSS, MSMO1, NSDHL and CH25H). Additionally, key pathways related to lipid storage and metabolism (the steroid biosynthesis and peroxisome proliferator activated receptor (PPAR) signaling pathway) may be the key pathways regulating differential lipid deposition between HTG group and LTG group. Conclusions This study showed that increased TG deposition accompanying an increase in steroid synthesis in pectoralis muscle tissue. Our findings of changes in gene expression of steroid biosynthesis and PPAR signaling pathway in HTG and LTG chickens provide insight into genetic mechanisms involved in different lipid deposition patterns in pectoralis muscle tissue.
Collapse
|