1
|
Wu Y, Zhang Q, Zhao B, Wang X. Effect and mechanism of propranolol on promoting osteogenic differentiation and early implant osseointegration. Int J Mol Med 2021; 48:191. [PMID: 34414453 PMCID: PMC8416142 DOI: 10.3892/ijmm.2021.5024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the effect of β‑receptor blocker propranolol on early osseointegration of pure titanium implants and the underlying molecular regulatory mechanisms. An implant osseointegration model using the tibial metaphysis of New Zealand rabbits was established. The rabbits were divided into control and low‑, medium‑ and high‑dose propranolol groups. The formation of implant osseointegration was detected by X‑ray scanning. Mesenchymal stem cells (MSCs) and osteoblasts (OBs) were isolated and cultured in vitro, isoproterenol was supplemented to simulate sympathetic action and propranolol was subsequently administrated. The effect of propranolol on cell proliferation and osteogenic differentiation were assessed by EdU, flow cytometry, alizarin red staining and alkaline phosphatase (ALP) detection. The expression levels of bone morphogenetic protein (BMP)2, RUNX family transcription factor (RunX)2, collagen (COL)‑1, osteocalcin (OCN) and β2‑adrenergic receptor (AR) were detected by immunofluorescence, reverse transcription‑quantitative PCR and western blot assay. Propranolol effectively promoted implant osseointegration in vivo, facilitated proliferation of OBs, inhibited proliferation of MSCs and enhanced osteogenic differentiation of OBs and MSCs. The calcium content and ALP activity of cells treated with propranolol were markedly higher than in the control group. Propranolol also elevated mRNA and protein expression levels of BMP2, RunX2, COL‑1 and OCN in tissue and cells, and decreased the expression of β2‑AR. The present study demonstrated that the β‑receptor blocker propranolol promoted osteogenic differentiation of OBs and MSCs and enhanced implant osseointegration. The present study provided a novel insight into the application and regulatory mechanisms of propranolol.
Collapse
Affiliation(s)
- Yupeng Wu
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Zhang
- School of Stomatology, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaojing Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
2
|
Sohn R, Rösch G, Junker M, Meurer A, Zaucke F, Jenei-Lanzl Z. Adrenergic signalling in osteoarthritis. Cell Signal 2021; 82:109948. [PMID: 33571663 DOI: 10.1016/j.cellsig.2021.109948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as 'joint' or 'cartilage' or 'synovium' or 'bone' and 'osteoarthritis' and/or 'trauma' and 'sympathetic nerve fibers' and/or 'norepinephrine' and 'adrenergic receptors / adrenoceptors' as well as 'adrenergic therapy'.
Collapse
Affiliation(s)
- Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Gundula Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Marius Junker
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany.
| |
Collapse
|
3
|
Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G. Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 2020; 83:102077. [PMID: 32839008 DOI: 10.1016/j.npep.2020.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Embryonic bone development is a complicated procedure and modulated by neuro-osteogenic interaction. Vasoactive intestinal peptide (VIP) was first identified as a neural vasodilator and further proved to possess multiple biological functions such as neurotransmitter and immune regulator. However, as a key peptide regulator presented in skeletal nerve fibers, the function of VIP on innervation and early bone development regulation has not fully been uncovered yet. In this study, the chick embryo has been used as an experimental model to address the effect of VIP on embryonic bone development. Our study results confirmed the innervation of peripheral nerve fibers into limb bone tissue, which was revealed by the detection of neurofilament (NF) and class III β-tubulin (TUJ-1) in bone tissue at various developing stages. The VIP mRNA and peptide expression level in bone tissue were also increased upon innervation progress. A chick embryonic chemical sympathectomy model was constructed by exposing chick embryos with neurotoxin 6-OHDA. The 6-OHDA exposure of the early chick embryo caused the reduction of neural crest formation and NF expression. 6-OHDA treatment also inhibited distal limb bone development as well as VIP expression. Furthermore, co-application of VIP with 6-OHDA exposure could rescue the inhibited osteogenesis activity and delayed bone development during embryogenesis. Taken together, these results reveal that VIP played an important role during innervation at early stage of bone development. VIP could restore chemical sympathectomy induced osteogenesis inhibition and bone development impair in chick embryos.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China; School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China
| | - Chaojie Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, PR China.
| |
Collapse
|
4
|
The brain–joint axis in osteoarthritis: nerves, circadian clocks and beyond. Nat Rev Rheumatol 2016; 12:508-16. [DOI: 10.1038/nrrheum.2016.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
6
|
Jenei-Lanzl Z, Grässel S, Pongratz G, Kees F, Miosge N, Angele P, Straub RH. Norepinephrine inhibition of mesenchymal stem cell and chondrogenic progenitor cell chondrogenesis and acceleration of chondrogenic hypertrophy. Arthritis Rheumatol 2014; 66:2472-81. [PMID: 24819295 DOI: 10.1002/art.38695] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 05/02/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Mesenchymal progenitor cell chondrogenesis is the biologic platform for the generation or regeneration of cartilage, but the external influence of the sympathetic nervous system on this process is not yet known. Sympathetic nerve fibers are present in articular tissue, and the sympathetic nervous system influences the musculoskeletal system by, for example, increasing osteoclastogenesis. This study was initiated to explore the role of the sympathetic neurotransmitter norepinephrine (NE) in mesenchymal stem cell (MSC)-dependent and cartilage progenitor cell (CPC)-dependent chondrogenesis. METHODS Using human MSCs or CPCs, chondrogenic differentiation was induced in the presence of NE, the specific β-adrenergic receptor (β-AR) agonist isoproterenol, and the specific β-AR antagonist nadolol. We studied sympathetic nerve fibers, tyrosine hydroxylase (TH) expression, catecholamine biosynthesis, and synovial fluid levels in human joints, as well as cartilage-specific matrix deposition during differentiation. RESULTS TH+ sympathetic nerve fibers were present in the synovial tissue, meniscus, and subchondral bone marrow. In addition, synovial fluid from patients with knee trauma demonstrated high concentrations of NE. During MSC or CPC chondrogenesis, β-AR were expressed. Chondrogenic aggregates treated with NE or isoproterenol synthesized lower amounts of type II collagen and glycosaminoglycans. NE and isoproterenol treatment dose-dependently increased the levels of cartilage hypertrophy markers (type X collagen and matrix metalloproteinase 13). Nadolol reversed the inhibition of chondrogenesis and the up-regulation of cartilage hypertrophy. CONCLUSION Our findings demonstrate NE-dependent inhibition of chondrogenesis and acceleration of hypertrophic differentiation. By inhibiting cartilage repair, these sympathetic influences can be important after joint trauma. These findings may be a basis for novel neurochondrogenic therapeutic options.
Collapse
|
7
|
Abstract
BACKGROUND A LEP transcript up-regulated in lungs of ducks (Anas platyrhynchos) infected by avian influenza A virus was recently described in the Nature Genetics manuscript that reported the duck genome. In vertebrates, LEP gene symbol is reserved for leptin, the key regulator of energy balance in mammals. RESULTS Launching an extensive search for this gene in the genome data that was submitted to the public databases along with duck genome manuscript and extending this search to all avian genomes in the whole-genome shotgun-sequencing database, we were able to report the first identification of coding sequences capable of encoding the full leptin protein precursor in wild birds. Gene structure, synteny and sequence-similarity (up to 54% identity and 68% similarity) to reptilian leptin evident in falcons (Falco peregrinus and cherrug), tits (Pseudopodoces humilis), finches (Taeniopygia guttata) and doves (Columba livia) confirmed that the bird leptin was a true ortholog of its mammalian form. Nevertheless, in duck, like other domestic fowls the LEP gene was not identifiable. CONCLUSION Lack of the LEP gene in poultry suggests that birds that have lost it are particularly suited to domestication. Identification of an intact avian gene for leptin in wild birds might explain in part the evolutionary conservation of its receptor in leptin-less fowls.
Collapse
Affiliation(s)
| | - Eyal Seroussi
- Institute of Animal Science, The Volcani Center, Rishon Le-Zion, Israel.
| |
Collapse
|
8
|
Jiang S, Cheng HW, Cui LY, Zhou ZL, Hou JF. Changes of blood parameters associated with bone remodeling following experimentally induced fatty liver disorder in laying hens. Poult Sci 2013; 92:1443-53. [PMID: 23687138 DOI: 10.3382/ps.2012-02800] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies have demonstrated that obesity and osteoporosis are linked disorders in humans. This study examined the hypothesis that excessive lipid consumption affects bone metabolism in laying hens. A total of one hundred 63-wk-old laying hens were randomly divided into 2 treatments and fed either a regular layer diet (control) or a high energy and low protein diet (HE-LP; experimental treatment) for 80 d. Egg production, feed intake, and BW were recorded at various days during the treatment. At d 80, ten randomly chosen birds per treatment group were killed. Abdominal fat weight, liver weight, and liver fat content were determined. Serum levels of total calcium, inorganic phosphate, and alkaline phosphatase were measured using a biochemical analyzer. Serum concentrations of osteocalcin, leptin-like protein, and estrogen were measured by enzyme-linked immunosorbent assay. Tibia length and width were measured using a vernier caliper; density of the right tibias was determined using an x-ray scanner; and mechanical properties of the left tibias were analyzed using a material testing machine. The expression of osteocalcin and osteoprotegerin mRNA in the keel bone was analyzed by real-time PCR. The concentration of osteocalcin protein in the keels was measured using western blot. Compared with control hens, hens fed the HE-LP diet had lower egg production, lower feed intake, greater liver fat content, and greater abdominal fat pad mass (P < 0.05). Feeding the HE-LP diet increased serum alkaline phosphatase activity, osteocalcin, leptin-like protein, and estrogen concentrations (P < 0.05), and decreased the keel osteocalcin concentrations (P < 0.05). There were significant positive correlations between the serum concentrations of leptin-like protein, estrogen, and osteocalcin regardless of treatment (P < 0.05). The results indicated that HE-LP diet induced a fatty liver disorder in laying hens with an upregulation in bone turnover and exacerbated skeletal damage. The data supported a role for lipid metabolism in skeletal heath of laying hens.
Collapse
Affiliation(s)
- S Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, P. R. China, 210095
| | | | | | | | | |
Collapse
|
9
|
Opolka A, Straub RH, Pasoldt A, Grifka J, Grässel S. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. ACTA ACUST UNITED AC 2012; 64:729-39. [DOI: 10.1002/art.33449] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Pallier K, Cazes A, El Khattabi L, Lecchi C, Desroches M, Danel C, Riquet M, Fabre-Guillevin E, Laurent-Puig P, Blons H. DeltaN TP63 reactivation, epithelial phenotype maintenance, and survival in lung squamous cell carcinoma. Tumour Biol 2011; 33:41-51. [PMID: 21986963 DOI: 10.1007/s13277-011-0239-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/09/2011] [Indexed: 11/28/2022] Open
Abstract
Genes, active during normal development, are frequently reactivated during neoplastic transformation and may be related to progression. One of them, the transcription factor TP63, is crucial for pulmonary epithelial development and a possible target of the recurrent 3q amplifications in lung squamous cell carcinoma (SCC). Here, we explored whether TP63 reactivation could be associated to cancer progression in lung SCC through an epithelial to mesenchymal transition. We studied TP63 amplification and TP63 expression at RNA and protein levels and we analyzed the ΔNTP63/TATP63 ratio that quantifies the proportion of the isoform lacking the transactivation domain/the isoform containing the transactivation domain. We correlated TP63 status to survival and to the expression of epithelial (E-cadherin and plakoglobin) and mesenchymal (N-cadherin, vimentin, TWIST1, and SNAIL) markers. We found that high ΔN/TA TP63 ratio was related to high E-cadherin and plakoglobin mRNA levels (P < 0.05) and that E-cadherin mRNA level was the only marker related to survival. Kaplan-Meier survival curves stratified according to the expression level of E-cadherin showed, as already reported in breast cancer, that patients with low (first quartile) or high (last quartile) E-cadherin expression had a worse survival with respect to patients with intermediate E-cadherin expression. Altogether, our results indicate that a reactivation of ΔNTP63 is linked to the maintenance of epithelial markers and suggest that E-cadherin has a dual role in lung SCC.
Collapse
Affiliation(s)
- Karine Pallier
- UMR-S775, INSERM, 45 Rue des Saints Pères, Paris 75006, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|