1
|
Santos MRBD, Moreira Filho ALDB, Freitas Neto OC, Andrade MDFDS, Silva NMVD, Sales GFC, Oliveira CJBD, Givisiez PEN. Shifts in microbiota and gene expression of nutrient transporters, mucin and interleukins in the gut of fast-growing and slow-growing chickens infected by Salmonella Enteritidis. Braz J Microbiol 2024; 55:1987-1996. [PMID: 38485903 PMCID: PMC11153419 DOI: 10.1007/s42770-024-01297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 06/07/2024] Open
Abstract
Slow-growing breeds are more resistant to Salmonella infection compared to fast-growing broilers. However, it is unclear whether that is associated with innate resistance or rather rely on differences in Salmonella-induced gut responses. We investigated the microbial composition and gene expression of nutrient transporters, mucin, and interleukin in the gut of a fast-growing (Cobb500) and a slow-growing naked neck (NN) chicken breeds challenged with Salmonella Enteritidis. Hatchlings were inoculated at two days of age using sterile broth (sham) or Salmonella Enteritidis (SE) and distributed according to a completely randomized design into four treatments: Cobb-sham; Cobb-SE; NN-sham; and NN-SE. Cecal SE counting and microbial composition by 16 S rRNA sequencing were determined at 24-, 96-, and 168-hours post-inoculation (hpi). Gene expression of amino acid (Asct1) and peptide transporters (PepT1), glucose transporters (Sglt1, Glut2 and Glut5) and mucin (Muc2) in the jejunum and expression of interleukins (IL1 beta, IL8, IL17 and IL22) in the cecum was assessed by qPCR at 24 and 168 hpi. NN birds were colonized by SE just as Cobb birds but showed innate upregulation of Muc2, IL8 and IL17 in comparison to Cobb. While nutrient transporter mRNA expression was impaired in SE-challenged Cobb birds, the opposite was observed in NN. There were no differences in microbial diversity at different sampling times for Cobb-SE, whereas the other groups had higher diversity and lower dominance at 24 hpi compared with 96 hpi and 168 hpi. NN birds apparently develop earlier gut microbial stability, have higher basal level of mucin gene expression as well as differential nutrient transporter and interleukin gene expression in the presence of SE which might mitigate the effects of SE infection compared to Cobb birds.
Collapse
Affiliation(s)
- Maylane Rayane Brito Dos Santos
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, PB, 58397-000, Brazil
| | | | - Oliveiro Caetano Freitas Neto
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31710-220, Brazil
| | | | | | - Gustavo Felipe Correia Sales
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, PB, 58397-000, Brazil
| | - Celso José Bruno de Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, PB, 58397-000, Brazil
| | - Patrícia Emília Naves Givisiez
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, PB, 58397-000, Brazil.
| |
Collapse
|
2
|
Lunedo R, Furlan LR, Fernandez-Alarcon MF, Squassoni GH, Campos DMB, Perondi D, Macari M. Intestinal microbiota of broilers submitted to feeding restriction and its relationship to hepatic metabolism and fat mass: Fast-growing strain. J Anim Physiol Anim Nutr (Berl) 2019; 103:1070-1080. [PMID: 30934145 DOI: 10.1111/jpn.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
The present study was conducted to verify how feed restriction affects gut microbiota and gene hepatic expression in broiler chickens and how these variables are related to body weight gain. For the experiment, 21-d-old Cobb500TM birds were distributed in a completely randomized experimental design with three treatments: T1. Control (ad libitum-3.176 Mcal/kg ME-metabolizable energy-and 19% CP-crude protein); T2. Energetic restriction (2.224 Mcal/kg ME and 19% CP) from 22 to 42 days with consumption equivalent to control; T3. Quantitative restriction (70% restriction, i.e., restricted broilers ingested only 30% of the quantity consumed by the control group-3.176 Mcal/kg ME and 19% CP) for 7 days, followed by refeeding ad libitum from 28 to 42 days. Ileum and caecum microbiota collections were made at 21, 28 and 42 days of age. Hepatic tissue was collected at 28 and 42 days old for relative gene expression analyses. At 43-d-old, body composition was quantified by DXA (Dual-energy X-ray Absorptiometry). Both feed restriction programmes decreased Lactobacillus and increased Enterococcus and Enterobacteriaceae counts. No differences were found in the refeeding period. Energetic restriction induced the expression of CPT1-A (Carnitine palmitoyltransferase 1A) gene, and decreased body fat mass. Quantitative feed restriction increased lipogenic and decreased lipolytic gene expression. In the refeeding period, CPT1-A gene expression was induced, without changing the broilers body composition. Positive associations were found between BWG (Body Weight Gain) and Lactobacillus and Clostridium cluster IV groups, and negatively associations with Enterobacteriaceae and Enterococcus bacterial groups. In conclusion, differences found in microbiota were similar between the two feed restriction programmes, however, hepatic gene expression differences were only found in quantitative restriction. Higher counts of Lactobacillus and Clostridium cluster IV groups in ileum are likely to be related to better broiler performance and low expression of lipogenic genes.
Collapse
Affiliation(s)
- Raquel Lunedo
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Luiz R Furlan
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | - Miguel F Fernandez-Alarcon
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Gustavo H Squassoni
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | - Daniel M B Campos
- Federal University of São Carlos (UFSCar), Campus Lagoa do Sino, São Paulo, Brazil
| | - Dani Perondi
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcos Macari
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
3
|
Miska KB, Fetterer RH. The effect of Eimeria maxima infection on the expression of amino acid and sugar transporters aminopeptidase, as well as the di- and tri-peptide transporter PepT1, is not solely due to decreased feed intake. Poult Sci 2018; 97:1712-1721. [DOI: 10.3382/ps/pey015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
|
4
|
Effect of egg storage duration and brooding temperatures on chick growth, intestine morphology and nutrient transporters. Animal 2017; 11:1791-1797. [PMID: 28219464 DOI: 10.1017/s1751731117000404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of egg storage duration (ESD) and brooding temperature (BT) on BW, intestine development and nutrient transporters of broiler chicks were investigated. A total of 396 chicks obtained from eggs stored at 18°C for 3 days (ESD3-18°C) or at 14°C for 14 days (ESD14-14°C) before incubation were exposed to three BTs. Temperatures were initially set at 32°C, 34°C and 30°C for control (BT-Cont), high (BT-High) and low (BT-Low) BTs, respectively. Brooding temperatures were decreased by 2°C each at days 2, 7, 14 and 21. Body weight was measured at the day of hatch, 2, 7, 14, 21, 28 and 42. Cloacal temperatures of broilers were recorded from 1 to 14 days. Intestinal morphology and gene expression levels of H+-dependent peptide transporter (PepT1) and Na-dependent glucose (SGLT1) were evaluated on the day of hatch and 14. Cloacal temperatures of chicks were affected by BTs from days 1 to 8, being the lowest for BT-Low chicks. BT-High resulted in the heaviest BWs at 7 days, especially for ESD14-14°C chicks. This result was consistent with longer villus and larger villus area of ESD14-14°C chicks at BT-High conditions. From 14 days to slaughter age, BT had no effect on broiler weight. ESD3-18°C chicks were heavier than ESD14-14°C chicks up to 28 days. The PepT1 and SGLT1 expression levels were significantly higher in ESD3-18°C chicks than ESD14-14°C on the day of hatch. There was significant egg storage by BT interaction for PepT1 and SGLT1 transporters at day 14. ESD14-14°C chicks had significantly higher expression of PepT1 and SGLT1 at BT-Low than those at BT-Cont. ESD14-14°C chicks upregulated PepT1 gene expression 1.15 and 1.57-fold at BT-High and BT-Low, respectively, compared with BT-Cont, whereas PepT1 expression was downregulated 0.67 and 0.62-fold in ESD3-18°C chicks at BT-High and BT-Low. These results indicated that pre-incubation egg storage conditions and BTs affected intestine morphology and PepT1 and SGLT1 nutrient transporters expression in broiler chicks.
Collapse
|
5
|
The effect of long term under- and over-feeding on the expression of genes related to glucose metabolism in mammary tissue of sheep. J DAIRY RES 2015; 82:228-35. [DOI: 10.1017/s0022029915000072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucose utilisation for lactose synthesis in the mammary gland involves expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, the effect of long term under- and over-feeding on the expression of genes [glucose transporter 1: GLUT1, glucose transporter 3: GLUT3, Sodium glucose contransporter 1: SGLT1, two isoforms of β- (1,4) galactosyltransferase: β- (1,4) GAT1, β- (1,4) GAT3 and α-lactalbumin: LALBA] related to glucose metabolism in sheep mammary tissue (MT) was examined. Twenty-four lactating dairy sheep were divided into three homogenous sub-groups and fed the same ration in quantities which met 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant reduction on mRNA of GLUT1 and LALBA gene in the MT of underfed sheep, compared with the respective controls and overfed and a significant reduction on mRNA level of SGLT1 and β- (1,4) GAT1 in the MT of underfed sheep, compared with the overfed ones. A significant increase in the GLUT3 mRNA accumulation in the MT of both under- and over- fed sheep was found. Additionally, a trend of reduction on β- (1,4) GAT3 mRNA level in the MT of the underfed sheep, compared with the overfed, was observed. A close positive relationship was obtained between the mRNA transcripts accumulation of GLUT1, SGLT1, β- (1,4) GAT1 and LALBA gene with the milk lactose content and milk lactose yield respectively. In conclusion, feeding level and consequently nutrient availability, may affect glucose uptake and utilisation in sheep MT by altering the GLUT1, GLUT3, SGLT1, β- (1,4) GAT1 and LALBA gene expression involved in their metabolic pathways.
Collapse
|
6
|
Digestive Enzymatic Responses of Chickens Feed-restricted and Refed as Affected by Age. J Poult Sci 2014. [DOI: 10.2141/jpsa.0130104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
7
|
Maternal protein restriction during pregnancy affects gene expression and immunolocalization of intestinal nutrient transporters in rats. Clin Sci (Lond) 2013; 125:281-9. [DOI: 10.1042/cs20120400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium–glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.
Collapse
|
8
|
Feng Y, Yang XJ, Wang YB, Li WL, Liu Y, Yin RQ, Yao JH. Effects of immune stress on performance parameters, intestinal enzyme activity and mRNA expression of intestinal transporters in broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:701-7. [PMID: 25049616 PMCID: PMC4093104 DOI: 10.5713/ajas.2011.11377] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/13/2012] [Accepted: 01/11/2012] [Indexed: 11/27/2022]
Abstract
Immune stress is the loss of immune homeostasis caused by external forces. The purpose of this experiment was to investigate the effects of immune stress on the growth performance, small intestinal enzymes and peristalsis rate, and mRNA expression of nutrient transporters in broiler chickens. Four hundred and thirty-two 1-d-old broilers (Cobb500) were randomly assigned to four groups for treatment; each group included nine cages with 12 birds per cage. Group 1 = no vaccine (NV); Group 2 = conventional vaccine (CV); group 3 = lipopolysaccharide (LPS)+conventional vaccine (LPS); group 4 = cyclophosphamide (CYP)+conventional vaccine (CYP). The results demonstrated that immune stress by LPS and CYP reduced body weight gain (BWG), feed intake (FI), small intestine peristalsis rate and sIgA content in small intestinal digesta (p<0.05). However, the feed conversion ratio (FCR) remained unchanged during the feeding period. LPS and CYP increased intestinal enzyme activity, relative expression of SGLT-1, CaBP-D28k and L-FABP mRNAs (p<0.05). LPS and CYP injection had a negative effect on the growth performance of healthy broiler chickens. The present study demonstrated that NV and CV could improve growth performance while enzyme activity in small intestine and relative expression of nutrient transporter mRNA of NV and CV were decreased in the conditions of a controlled rational feeding environment. It is generally recommended that broilers only need to be vaccinated for the diseases to which they might be exposed.
Collapse
Affiliation(s)
- Y Feng
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China ; Department of Life Science, Shanxi Agricultural University, Taigu 030801, China
| | - X J Yang
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China
| | - Y B Wang
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China
| | - W L Li
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China
| | - Y Liu
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China
| | - R Q Yin
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China
| | - J H Yao
- College of Animal Science and Technology, Northwest A & F University, Shaanxi, Yangling 712100, China
| |
Collapse
|