1
|
Tomlinson MJ, Polson SW, Qiu J, Lake JA, Lee W, Abasht B. Investigation of allele specific expression in various tissues of broiler chickens using the detection tool VADT. Sci Rep 2021; 11:3968. [PMID: 33597613 PMCID: PMC7889858 DOI: 10.1038/s41598-021-83459-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Differential abundance of allelic transcripts in a diploid organism, commonly referred to as allele specific expression (ASE), is a biologically significant phenomenon and can be examined using single nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment patterns, but all three tissues showed enrichment for pathways involved in translation.
Collapse
Affiliation(s)
- M Joseph Tomlinson
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - Shawn W Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, USA.,Department of Biological Sciences, University of Delaware, Newark, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - Jing Qiu
- Department of Applied Economics and Statistics, University of Delaware, Newark, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - Juniper A Lake
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - William Lee
- Maple Leaf Farms, Inc., Leesburg, IN, 46538, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA.
| |
Collapse
|
2
|
Smith J, Lipkin E, Soller M, Fulton JE, Burt DW. Mapping QTL Associated with Resistance to Avian Oncogenic Marek's Disease Virus (MDV) Reveals Major Candidate Genes and Variants. Genes (Basel) 2020; 11:genes11091019. [PMID: 32872585 PMCID: PMC7564597 DOI: 10.3390/genes11091019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Marek’s disease (MD) represents a significant global economic and animal welfare issue. Marek’s disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive α-herpes virus, which infects chickens, causing neurological effects and tumour formation. Though partially controlled by vaccination, MD continues to have a profound impact on animal health and on the poultry industry. Genetic selection provides an alternative and complementary method to vaccination. However, even after years of study, the genetic mechanisms underlying resistance to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of the largest to date, we used a multi-facetted approach to identify quantitative trait locus regions (QTLR) influencing resistance to MDV, including an F6 population from a full-sib advanced intercross line (FSIL) between two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus challenged chicks, and genome wide association study (GWAS) from multiple commercial lines. Candidate genomic elements residing in the QTLR were further tested for association with offspring mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight QTLR were found on 19 chicken chromosomes. Candidate genes, microRNAs, long non-coding RNAs and potentially functional mutations were identified in these regions. Association tests were carried out in 26 of the QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were strongly associated with MD resistance. Genomic regions significantly associated with resistance to MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a strong genetic association with resistance. These results provide a large number of significant targets for mitigating the effects of MDV infection on both poultry health and the economy, whether by means of selective breeding, improved vaccine design, or gene-editing technologies.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Janet E Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
3
|
Salavati M, Bush SJ, Palma-Vera S, McCulloch MEB, Hume DA, Clark EL. Elimination of Reference Mapping Bias Reveals Robust Immune Related Allele-Specific Expression in Crossbred Sheep. Front Genet 2019; 10:863. [PMID: 31608110 PMCID: PMC6761296 DOI: 10.3389/fgene.2019.00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Pervasive allelic variation at both gene and single nucleotide level (SNV) between individuals is commonly associated with complex traits in humans and animals. Allele-specific expression (ASE) analysis, using RNA-Seq, can provide a detailed annotation of allelic imbalance and infer the existence of cis-acting transcriptional regulation. However, variant detection in RNA-Seq data is compromised by biased mapping of reads to the reference DNA sequence. In this manuscript, we describe an unbiased standardized computational pipeline for allele-specific expression analysis using RNA-Seq data, which we have adapted and developed using tools available under open license. The analysis pipeline we present is designed to minimize reference bias while providing accurate profiling of allele-specific expression across tissues and cell types. Using this methodology, we were able to profile pervasive allelic imbalance across tissues and cell types, at both the gene and SNV level, in Texel×Scottish Blackface sheep, using the sheep gene expression atlas data set. ASE profiles were pervasive in each sheep and across all tissue types investigated. However, ASE profiles shared across tissues were limited, and instead, they tended to be highly tissue-specific. These tissue-specific ASE profiles may underlie the expression of economically important traits and could be utilized as weighted SNVs, for example, to improve the accuracy of genomic selection in breeding programs for sheep. An additional benefit of the pipeline is that it does not require parental genotypes and can therefore be applied to other RNA-Seq data sets for livestock, including those available on the Functional Annotation of Animal Genomes (FAANG) data portal. This study is the first global characterization of moderate to extreme ASE in tissues and cell types from sheep. We have applied a robust methodology for ASE profiling to provide both a novel analysis of the multi-dimensional sheep gene expression atlas data set and a foundation for identifying the regulatory and expressed elements of the genome that are driving complex traits in livestock.
Collapse
Affiliation(s)
- Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sergio Palma-Vera
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Reproductive Biology, Dummerstorf, Germany
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Paukszto L, Mikolajczyk A, Szeszko K, Smolinska N, Jastrzebski JP, Kaminski T. Transcription analysis of the response of the porcine adrenal cortex to a single subclinical dose of lipopolysaccharide from Salmonella Enteritidis. Int J Biol Macromol 2019; 141:1228-1245. [PMID: 31520703 DOI: 10.1016/j.ijbiomac.2019.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin which can participate in the induction of inflammatory responses. LPS may also play a significant role in some neurodegenerative, oncological and metabolic disorders. The aim of the current study was to determine the effect of a subclinical low single dose of LPS from Salmonella Enteritidis administrated in vivo on the transcriptome of porcine adrenal cortex cells, especially gene expression levels, long non-coding RNA (lncRNA) profiles, alternative splicing events and RNA editing sites using RNA-seq technology. The subclinical dose of LPS changed the expression of 354 genes, 27 lncRNA loci and other unclassified RNAs. An analysis of alternative splicing events revealed 104 genes with differentially expressed splice junction sites, and the single nucleotide variant calling approach supported the identification of 376 canonical RNA editing candidates and 7249 allele-specific expression variants. The obtained results suggest that the RIG-I-like receptor signaling pathway, may play a more important role than the Toll-like signaling pathway after the administration of a subclinical dose of LPS. Single subclinical dose of LPS can affect the expression profiles of genes coding peptide hormones, steroidogenic enzymes and transcriptional factors, and modulate the endocrine functions of the gland.
Collapse
Affiliation(s)
- Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Anita Mikolajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
5
|
Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds. J Appl Genet 2015; 56:481-491. [PMID: 25737137 DOI: 10.1007/s13353-015-0275-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/15/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Abstract
Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.
Collapse
|
6
|
Wickramasinghe S, Cánovas A, Rincón G, Medrano JF. RNA-Sequencing: A tool to explore new frontiers in animal genetics. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Goher M, Hicks JA, Liu HC. The interplay between MDV and HVT affects viral miRNa expression. Avian Dis 2013; 57:372-9. [PMID: 23901749 DOI: 10.1637/10440-110112-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well established that herpesviruses encode numerous microRNAs (miRNAs) and that these virally encoded small RNAs play multiple roles in infection. The present study was undertaken to determine how co-infection of a pathogenic MDV serotype one (MDV1) strain (MD5) and a vaccine strain (herpesvirus of turkeys [HVT]) alters viral miRNA expression in vivo. We first used small RNA deep sequencing to identify MDV1-encoded miRNAs that are expressed in tumorigenic spleens of MDV1-infected birds. The expression patterns of these miRNAs were then further assessed at an early time point (7 days postinfection [dpi]) and a late time point (42 dpi) in birds with and without HVT vaccination using real-time PCR (RT-PCR). Additionally, the effect of MDV1 co-infection on HVT-encoded miRNAs was determined using RT-PCR. A diverse population of miRNAs was expressed in MDV-induced tumorigenic spleens at 42 dpi, with 18 of the 26 known mature miRNAs represented. Of these, both mdv1-miR-M4-5p and mdv1-miR-M2-3p were the most highly expressed miRNAs. RT-PCR analysis further revealed that nine MDV miRNAs were differentially expressed between 7 dpi and 42 dpi infected spleens. At 7 dpi, three miRNAs were differentially expressed between the spleens of birds co-infected with HVT and MD5 compared with birds singly infected with MD5, whereas at 42 dpi, nine miRNAs were differentially expressed. At 7 dpi, the expression of seven HVT-encoded miRNAs was affected in the spleens of co-infected birds compared with birds only receiving the HVT vaccine. At 42 dpi, six HVT-encoded miRNAs were differentially expressed between the two groups. Target prediction analysis suggests that these differentially expressed viral miRNAs are involved in regulating several cellular processes, including cell proliferation and the adaptive immune response.
Collapse
Affiliation(s)
- Mohamed Goher
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
8
|
Gaur U, Li K, Mei S, Liu G. Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genet 2013; 54:271-83. [PMID: 23609142 DOI: 10.1007/s13353-013-0148-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
Abstract
Although the majority of genes are expressed equally from both alleles, some genes are differentially expressed. Organisms possess characteristics to preferentially express a particular allele under regulatory factors, which is termed allele-specific expression (ASE). It is one of the important genetic factors that lead to phenotypic variation and can be used to identify the variance of gene regulation factors. ASE indicates mechanisms such as DNA methylation, histone modifications, and non-coding RNAs function. Here, we review a broad survey of progress in ASE studies, and what this simple yet very effective approach can offer in functional genomics, and possible implications toward our better understanding of the underlying mechanisms of complex traits.
Collapse
Affiliation(s)
- Uma Gaur
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Yaoyuan No. 1, Nanhu, Hongshan District, Wuhan, 430064, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Olbromski R, Siadkowska E, Zelazowska B, Zwierzchowski L. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary. Mol Biol Rep 2012. [PMID: 23184004 PMCID: PMC3538019 DOI: 10.1007/s11033-012-2161-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them—LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C–C motif ligand 2) showed allelic expression imbalance.
Collapse
Affiliation(s)
- R Olbromski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences (IGAB PAS), Jastrzębiec, 05-552, Magdalenka, Poland.
| | | | | | | |
Collapse
|