1
|
Song Z, Ni W, Li B, Ma Y, Han L, Yu Q. Sustainable ferritin from bovine by-product liver as a potential resource: Ultrasound assisted extraction and physicochemical, structural, functional, and stable analysis. Int J Biol Macromol 2024; 281:136264. [PMID: 39366604 DOI: 10.1016/j.ijbiomac.2024.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Ferritin is an iron-containing protein that is widely present in all organisms and has the function of regulating the metabolic balance of iron in organisms. It can be separated from animal by-product tissues and converted into value-added components to promote the development of a circular economy. This study established a method for extracting bovine liver ferritin (BLFer) using ultrasound-assisted buffer system. The optimal extraction conditions were determined through single factor and response surface optimization experiments as follows: ultrasound temperature of 70 °C, extraction time of 25 min, ultrasonic power of 400 W and solvent-to-solid ratio of 2 mL/g, the experimental value of the ferritin yield was 32.18 ± 0.12 g/kg. Compared with traditional methods, Ultrasound-assisted extraction improved the ferritin yield and enhanced its structural stability. Bioinformatics analysis revealed that BLFer is a hydrophilic protein with strong thermal stability. The BLFer has a ferrous oxidase active center, which plays an important role in the oxidative precipitation and reductive release of iron. It can dissociate under strong acids or bases but maintains good stability after heat treatment. These findings will help improve the comprehensive utilization of animal by-products, and promote the potential application of animal by-product ferritin in food and other industries.
Collapse
Affiliation(s)
- Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wenjing Ni
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Bingzi Li
- Fuping County Testing and Inspection Center, Weinan, China
| | - Yabin Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
2
|
Srivastava AK, Reutovich AA, Hunter NJ, Arosio P, Bou-Abdallah F. Ferritin microheterogeneity, subunit composition, functional, and physiological implications. Sci Rep 2023; 13:19862. [PMID: 37963965 PMCID: PMC10646083 DOI: 10.1038/s41598-023-46880-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Ferritin is a ubiquitous intracellular iron storage protein that plays a crucial role in iron homeostasis. Animal tissue ferritins consist of multiple isoforms (or isoferritins) with different proportions of H and L subunits that contribute to their structural and compositional heterogeneity, and thus physiological functions. Using size exclusion and anion exchange chromatography, capillary isoelectric focusing (cIEF), and SDS-capillary gel electrophoresis (SDS-CGE), we reveal for the first time a significant variation in ferritin subunit composition and isoelectric points, in both recombinant and native ferritins extracted from animal organs. Our results indicate that subunits composition is the main determinant of the mean pI of recombinant ferritin heteropolymers, and that ferritin microheterogeneity is a common property of both natural and recombinant proteins and appears to be an intrinsic feature of the cellular machinery during ferritin expression, regulation, post-translational modifications, and post-subunits assembly. The functional significance and physiological implications of ferritin heterogeneity in terms of iron metabolism, response to oxidative stress, tissue-specific functions, and pathological processes are discussed.
Collapse
Affiliation(s)
- Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY, 13676, USA
| | | | - Nathan J Hunter
- Department of Chemistry, State University of New York, Potsdam, NY, 13676, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY, 13676, USA.
| |
Collapse
|
3
|
Jiang D, Niu C, Mo G, Wang X, Sun Q, An X, Ji C, Ling W, Li L, Zhao H, Han C, Liu H, Hu J, Kang B. Ferritin heavy chain participated in ameliorating 3-nitropropionic acid-induced oxidative stress and apoptosis of goose follicular granulosa cells. Poult Sci 2023; 102:102606. [PMID: 36940654 PMCID: PMC10033315 DOI: 10.1016/j.psj.2023.102606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Oxidative stress is the major culprits responsible for ovarian dysfunction by damaging granulosa cells (GCs). Ferritin heavy chain (FHC) may participate in the regulation of ovarian function by mediating GCs apoptosis. However, the specific regulatory function of FHC in follicular GCs remains unclear. Here, 3-nitropropionic acid (3-NPA) was utilized to establish an oxidative stress model of follicular GCs of Sichuan white geese. To explore the regulatory effects of FHC on oxidative stress and apoptosis of primary GCs in geese by interfering or overexpressing FHC gene. After transfection of siRNA-FHC to GCs for 60 h, the expressions of FHC gene and protein decreased significantly (P < 0.05). After FHC overexpression for 72 h, the expressions of FHC mRNA and protein upregulated considerably (P < 0.05). The activity of GCs was impaired after interfering with FHC and 3-NPA coincubated (P < 0.05). When overexpression of FHC combined with 3-NPA treatment, the activity of GCs was remarkably enhanced (P < 0.05). After interference FHC and 3-NPA treatment, NF-κB and NRF2 gene expression decreased (P < 0.05), the intracellular reactive oxygen species (ROS) level increased greatly (P < 0.05), BCL-2 expression reduced, BAX/BCL-2 ratio intensified (P < 0.05), the mitochondrial membrane potential decreased notably (P < 0.05), and the apoptosis rate of GCs aggravated (P < 0.05). While overexpression of FHC combined with 3-NPA treatment could promote BCL-2 protein expression and reduce BAX/BCL-2 ratio, indicating that FHC regulated the mitochondrial membrane potential and apoptosis of GCs by mediating the expression of BCL-2. Taken together, our research manifested that FHC alleviated the inhibitory effect of 3-NPA on the activity of GCs. FHC knockdown could suppress the expression of NRF2 and NF-κB genes, reduce BCL-2 expression and augment BAX/BCL-2 ratio, contributing to the accumulation of ROS and jeopardizing mitochondrial membrane potential, as well as exacerbating GCs apoptosis.
Collapse
Affiliation(s)
- Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chunyang Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Guilin Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Qian Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoguang An
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chengweng Ji
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Weikang Ling
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
4
|
Zou Y, Shahidi F, Shi H, Wang J, Huang Y, Xu W, Wang D. Values-added utilization of protein and hydrolysates from animal processing by-product livers: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Tóthová C, Sesztáková E, Bielik B, Nagy O. Changes of total protein and protein fractions in broiler chickens during the fattening period. Vet World 2019; 12:598-604. [PMID: 31190717 PMCID: PMC6515826 DOI: 10.14202/vetworld.2019.598-604] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Blood proteins in birds serve as an important indicator in the evaluation of health status and represent a basis in general biochemistry allowing the identification of metabolic alterations. The objective of this study was to evaluate the protein profile in broiler chickens extended by the concentrations of serum protein fractions at different periods of fattening. Materials and Methods Into the evaluation, we included 24 clinically healthy Ross 308 line meat-type chickens at the age of 2 days. Blood samples were taken on day 4, 18, 32, and 46 of fattening always from six randomly selected chickens. Chickens were fed with a commercial starter, grower, and finisher feeds. The concentrations of total serum protein and protein fractions were evaluated. Results Various significant changes in the proportion of the individual protein fractions were found during the observed period except for the beta-globulins in all protein fractions and the albumin/globulin (A/G) ratio. At the beginning of the fattening period, the relative concentrations of albumin, α1-globulins, and A/G ratio were significantly lower and the values of α2- and γ-globulins significantly higher (p<0.05). The values of pre-albumin fraction were found as a small band preceding the albumin fraction differed significantly between the different age groups of chickens (p<0.05). The total serum protein concentrations showed higher values in older broilers; the significantly highest mean value was recorded on day 32 of fattening. Conclusion The results suggest that fattening and age of broilers influences not only the production patterns, metabolic processes, and lipid and mineral profile but also the parameters of protein profile. However, seeing that some contradictory data exist regarding the number and size of globulin fractions in chickens, further analyses are needed.
Collapse
Affiliation(s)
- Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Edina Sesztáková
- Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Bohumil Bielik
- Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Oskar Nagy
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
6
|
Ma D, Liu Q, Zhang M, Feng J, Li X, Zhou Y, Wang X. iTRAQ-based quantitative proteomics analysis of the spleen reveals innate immunity and cell death pathways associated with heat stress in broilers (Gallus gallus). J Proteomics 2019; 196:11-21. [DOI: 10.1016/j.jprot.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
|
7
|
Kang B, Wang X, Xu Q, Wu Y, Si X, Jiang D. Effect of 3-nitropropionic acid inducing oxidative stress and apoptosis of granulosa cells in geese. Biosci Rep 2018; 38:BSR20180274. [PMID: 30042167 PMCID: PMC6131328 DOI: 10.1042/bsr20180274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
The mechanism of action by which oxidative stress induces granulosa cell apoptosis, which plays a vital role in initiating follicular atresia, is not well understood. In the present study, the effect of 3-nitropropionic acid (3-NPA) on oxidative stress and apoptosis in granulosa cells in geese was investigated. Our results showed that treatment with 3-NPA at 5.0 mmol/l for 24 h increased intracellular reactive oxygen species (ROS) production by 25.4% and decreased granulosa cell viability by 45.5% (P<0.05). Catalase and glutathione peroxidase gene expression levels in granulosa cells treated with 3-NPA were 1.32- and 0.49-fold compared with those of the control cells, respectively (P <0.05). A significant decrease in the expression level of B-cell lymphoma 2 (Bcl-2) protein and remarkable increases in the levels of Bax, p53 and cleaved-Caspase 3 proteins and the ratio of Bax/Bcl-2 expression in granulosa cells treated with 3-NPA were observed (P<0.05). Furthermore, a 38.43% increase in the percentage of early apoptotic cells was also observed in granulosa cells treated with 3-NPA (P<0.05). Moreover, the expression levels of NF-κB, Nrf2, Fhc, Hspa2 and Ho-1 in granulosa cells treated with 3-NPA were elevated 4.36-, 1.63-, 3.62-, 27.54- and 10.48-fold compared with those of the control cells (P<0.05), respectively. In conclusion, the present study demonstrates that treatment with 3-NPA induces ROS production and apoptosis and inhibits the viability of granulosa cells in geese. Furthermore, 3-NPA triggers increases in the expression of cleaved-Caspase 3 protein and the ratio of Bax/Bcl-2 expression, and induces the early apoptosis of granulosa cells.
Collapse
Affiliation(s)
- Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xinxing Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Qilin Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, People's Republic of China
| | - Yongsheng Wu
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, People's Republic of China
| | - Xiaohui Si
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| |
Collapse
|
8
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
9
|
Physiological implications of mammalian ferritin-binding proteins interacting with circulating ferritin and a new aspect of ferritin- and zinc-binding proteins. Biometals 2015; 29:15-24. [DOI: 10.1007/s10534-015-9897-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
|
10
|
Molecular cloning and expression analysis of ferritin, heavy polypeptide 1 gene from duck (Anas platyrhynchos). Mol Biol Rep 2014; 41:6233-40. [PMID: 24981929 DOI: 10.1007/s11033-014-3503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/18/2014] [Indexed: 01/14/2023]
Abstract
H-ferritin is a core subunit of the iron storage protein ferritin, and is related to the pathogenesis of malignant diseases. A differential expressed sequence tag of the ferritin, heavy polypeptide 1 gene (FTH1) was obtained from our previously constructed suppression subtractive cDNA library from 3-day-old ducklings challenged with duck hepatitis virus type I (DHV-1). The expression and function of FTH1 in immune defense against infection remains largely unknown in ducks. In this study, the full-length duFTH1 cDNA was obtained using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. It consisted of 153 basepairs (bp) 5'untranslated region (UTR), 183 bp 3'UTR, and 546 bp open reading frame that encodes a single protein of 181 amino acid residues. duFTH1 shares high similarity with FTH1 genes from other vertebrates. The amino acid sequence possesses the conserved domain of typical ferritin H subunits, including seven metal ligands in the ferroxidase center, one iron binding region signature, and a potential bio-mineralization residue (Thy(29)). Moreover, in agreement with a previously reported ferritin H subunit, we identified an iron response element in the 5'UTR. RT-PCR analyses revealed duFTH1 mRNA is widely expressed in various tissues. Real-time quantitative polymerase chain reaction analyses suggested that duFTH1 mRNA is significantly up-regulated in the liver after DHV-1 injection or polyriboinosinic polyribocytidylic acid (polyI:C) treatment, reaching a peak 4 h post-infection, and dropping progressively and returning to normal after 24 h. Our findings suggest that duFTH1 functions as an iron chelating protein subunit in duck and contributes to the innate immune responses against viral infections.
Collapse
|
11
|
Mieno A, Yamamoto Y, Yoshikawa Y, Watanabe K, Mukai T, Orino K. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans. J Vet Med Sci 2013; 75:1101-5. [PMID: 23545463 DOI: 10.1292/jvms.13-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.
Collapse
Affiliation(s)
- Ayako Mieno
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | | | | | | | | | | |
Collapse
|