1
|
Li T, Xing F, Zhang N, Chen J, Zhang Y, Yang H, Peng S, Ma R, Liu Q, Gan S, Wang H. Genome-Wide Association Analysis of Growth Traits in Hu Sheep. Genes (Basel) 2024; 15:1637. [PMID: 39766904 PMCID: PMC11675594 DOI: 10.3390/genes15121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: The Hu sheep is a renowned breed characterized by high reproduction, year-round estrus, and resistance to high humidity and temperature conditions. However, the breed exhibits lower growth rates and meat yields, which necessitate improvements through selective breeding. The integration of molecular markers in sheep breeding programs has the potential to enhance growth performance, reduce breeding cycles, and increase meat production. Currently, the applications of SNP chips for genotyping in conjunction with genome-wide association studies (GWAS) have become a prevalent approach for identifying candidate genes associated with economically significant traits in livestock. (2) Methods: To pinpoint candidate genes influencing growth traits in Hu sheep, we recorded the birth weight, weaning weight, and weights at 3, 4, 5, 6, and 7 months for a total of 567 Hu sheep, and genotyping was performed using the Ovine 40K SNP chip. (3) Results: Through GWAS analysis and KEGG pathway enrichment, we identified three candidate genes associated with birth weight (CAMK2B, CACNA2D1, and CACNA1C). Additionally, we found two candidate genes linked to weaning weight (FGF9 and BMPR1B), with CACNA2D1 also serving as a shared gene between birth weight and weaning weight traits. Furthermore, we identified eight candidate genes related to monthly weight (FIGF, WT1, KCNIP4, JAK2, WWP1, PLCL1, GPRIN3, and CCSER1). (4) Conclusion: Our findings revealed a total of 13 candidate genetic markers that can be utilized for molecular marker-assisted selection, aiming to improve meat production in sheep breeding programs.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science and Technology, Tarim University, Alar 843300, China; (T.L.); (F.X.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Feng Xing
- College of Life Science and Technology, Tarim University, Alar 843300, China; (T.L.); (F.X.)
| | - Na Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Jieran Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Yuting Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Hengqian Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Shiyu Peng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Runlin Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Qiuyue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| | - Shangquan Gan
- College of Life Science and Technology, Tarim University, Alar 843300, China; (T.L.); (F.X.)
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haitao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (N.Z.); (J.C.); (Y.Z.); (H.Y.); (S.P.); (R.M.); (Q.L.)
| |
Collapse
|
2
|
Wu X, Zhang H, Long H, Zhang D, Yang X, Liu D, E G. Genome-Wide Selection Signal Analysis to Investigate Wide Genomic Heredity Divergence between Eurasian Wild Boar and Domestic Pig. Animals (Basel) 2023; 13:2158. [PMID: 37443955 DOI: 10.3390/ani13132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
As important livestock species, pigs provide essential meat resources for humans, so understanding the genetic evolution behind their domestic history could help with the genetic improvement of domestic pigs. This study aimed to investigate the evolution of convergence and divergence under selection in European and Asian domestic pigs by using public genome-wide data. A total of 164 and 108 candidate genes (CDGs) were obtained from the Asian group (wild boar vs. domestic pig) and the European group (wild boar vs. domestic pig), respectively, by taking the top 5% of intersected windows of a pairwise fixation index (FST) and a cross population extended haplotype homozygosity test (XPEHH). GO and KEGG annotated results indicated that most CDGs were related to reproduction and immunity in the Asian group. Conversely, rich CDGs were enriched in muscle development and digestion in the European group. Eight CDGs were subjected to parallel selection of Eurasian domestic pigs from local wild boars during domestication. These CDGs were mainly involved in olfactory transduction, metabolic pathways, and progesterone-mediated oocyte maturation. Moreover, 36 and 18 haplotypes of INPP5B and TRAK2 were identified in this study, respectively. In brief, this study did not only improve the understanding of the genetic evolution of domestication in pigs, but also provides valuable CDGs for future breeding and genetic improvement of pigs.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| |
Collapse
|
3
|
Bello SF, Xu H, Li K, Guo L, Zhang S, Ahmed RO, Bekele EJ, Zheng M, Xian M, Abdalla BA, Adeola AC, Adetula AA, Lawal RA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Research Note: Association of Single Nucleotide Polymorphism of AKT3 with Egg Production Traits in White Muscovy Ducks (Cairina moschata). Poult Sci 2022; 101:102211. [PMID: 36272235 PMCID: PMC9589204 DOI: 10.1016/j.psj.2022.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Prior studies on transcriptomes of hypothalamus and ovary revealed that AKT3 is one of the candidate genes that might affect egg production in White Muscovy ducks. The role of AKT3 in the uterus during reproductive processes cannot be overemphasized. However, functional role of this gene in the tissues and on egg production traits of Muscovy ducks remains unknown. To identify the relationship between AKT3 and egg production traits in ducks, relative expression profile was first examined prior to identifying the variants within AKT3 that may underscore egg production traits [age at first egg (AFE), number of eggs at 300 d (N300D), and number of eggs at 59 wk (N59W)] in 549 ducks. The mRNA expression of AKT3 gene in high producing (HP) ducks was significantly higher than low producing (LP) ducks in the ovary, oviduct, and hypothalamus (P < 0.05 or 0.001). Three variants in AKT3 (C-3631A, C-3766T, and C-3953T) and high linkage block between C-3766T and C-3953T which are significantly (P < 0.05) associated with N300D and N59W were discovered. This study elucidates novel knowledge on the molecular mechanism of AKT3 that might be regulating egg production traits in Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ridwan Olawale Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Adeniyi Charles Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Adeyinka Abiola Adetula
- Reproductive Biotechnology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| | | | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
4
|
Identification of the Differentially Expressed Genes in the leg muscles of Zhedong White Geese (Anser cygnoides) reared under different photoperiods. Poult Sci 2022; 101:102193. [PMID: 36257072 PMCID: PMC9579406 DOI: 10.1016/j.psj.2022.102193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.
Collapse
|
5
|
Sahib AM, Al-Khalisy AF, Abdulwahid MT. Association of TGF-β2 Gene Polymorphism with Growth Rate in Local Chickens. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i1.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Iraqi native chickens have tasty meat and eggs; however, they are characterized by low production efficiency. In fact, phenotypic traits, such as growth rate, are influenced by genes and environmental factors. During health and disease, a variety of cellular processes such as proliferation, differentiation, motility, adhesion, migration, apoptosis, and immune response regulate the TGF-β genes. The enhancement in body weight can be reached through mass selection, whereas feed conversion ratio (FCR) is relatively more difficult to improve. This means, selecting for body weight has been submitted as an effective way of indirectly improving feed conversion ratio. Therefore, the present study attempts to identify associations between productive traits and polymorphism of TGF-β2 gene in local Iraqi chicken. Seventy-five male birds were used in this study. The restriction enzyme RsaI has been used to detect the target region (284 bp) in the TGF-β2 gene. A single nucleotide polymorphism (SNP) was identified at the position 62 in the exon 1 region of TGF-β2 by using PCR-RFLP and DNA sequencing technique. The genotypic frequencies were 46.7, 40, and 13.3% for CC and TC and TT genotypes, respectively. While the allele frequency of C and T were 0.67 and 0.33%, respectively. Generally, during the last period of rearing the best significant (P<0.05) improve in the body weight, weight gain and FCR were recorded in the TT genotype of the TGF-β2 gene. In conclusion, a functional sequence in the genome could be attributed to the mutation. Therefore, genotype of the TGF-β2 gene could be exploited to select the best individual as a parent to the next generations for improving of growth rate in
Collapse
|
6
|
Li C, Xiong T, Zhou M, Wan L, Xi S, Liu Q, Chen Y, Mao H, Liu S, Chen B. Characterization of microRNAs during Embryonic Skeletal Muscle Development in the Shan Ma Duck. Animals (Basel) 2020; 10:ani10081417. [PMID: 32823859 PMCID: PMC7460075 DOI: 10.3390/ani10081417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Simple Summary It is of great commercial interest to elucidate the genetic mechanisms associated with skeletal muscle development in the duck. In this study, we performed high throughput microRNA (miRNA) sequencing to identify the candidate miRNAs during two developmental stages of duck embryonic breast muscle. We detected 1091 miRNAs and 109 of them were differentially expressed between embryonic day 13 (E13) and E19. We also predicted the target genes of the differentially expressed miRNAs and subsequently analyzed the enriched gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways, and finally constructed a protein–protein interaction (PPI) network with the target genes. Luciferase reporter assay showed that the growth-related genes, Fibroblast growth factor receptor like 1 (FGFRL1) and Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1), were target genes of miR-214-5p. These results can supplement the duck miRNA database and provide several candidate miRNAs for future studies on the regulation of embryonic skeletal muscle development. Abstract Poultry skeletal muscle provides high quality protein for humans. Study of the genetic mechanisms during duck skeletal muscle development contribute to future duck breeding and meat production. In the current study, three breast muscle samples from Shan Ma ducks at embryonic day 13 (E13) and E19 were collected, respectively. We detected microRNA (miRNA) expression using high throughput sequencing following bioinformatic analysis. qRT-PCR validated the reliability of sequencing results. We also identified target prediction results using the luciferase reporter assay. A total of 812 known miRNAs and 279 novel miRNAs were detected in six samples; as a result, 61 up-regulated and 48 down-regulated differentially expressed miRNAs were identified between E13 and E19 (|log2 fold change| ≥ 1 and p ≤ 0.05). Enrichment analysis showed that target genes of the differentially expressed miRNAs were enriched on many muscle development-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathways. An interaction network was constructed using the target genes of the differentially expressed miRNAs. These results complement the current duck miRNA database and offer several miRNA candidates for future studies of skeletal muscle development in the duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Biao Chen
- Correspondence: ; Tel.: +86-189-3150-7508
| |
Collapse
|
7
|
Getmantseva LV, Bakoev SY, Shevtsova VS, Kolosov AY, Bakoev NF, Kolosova MA. Assessing the Effect of SNPs on Litter Traits in Pigs. SCIENTIFICA 2020; 2020:5243689. [PMID: 32802554 PMCID: PMC7414332 DOI: 10.1155/2020/5243689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The reproductive ability of sows is the principle of continuous and efficient production, based on such traits as the number of piglets, the total number of parities, and the period of economic use. Currently, SNPs associated with the TNB and NBA are presented in the PigQTLdb. The aim of this work was the assessment of the SNP effects on the litter traits in Large White (LW, n = 502) and Landrace (LN, n = 432) sow breeds in a farm in Russia. 9 SNPs (SNP_1: rs80956812; SNP_2: rs81471381; SNP_3: rs80891106; SNP_4: rs81399474; SNP_5: rs81421148; SNP_6: rs81242222; SNP_7: rs81319839; SNP_8: rs81312912; SNP_9: rs80962240) were selected for the study. Associative analysis was performed using the GLM procedure in R version 3.5.1. The analysis of reproductive traits was carried out according to the results of the first parity, the second and subsequent parities, and totals for lifetime of sows. The significant effect on litter traits in LW was determined for SNP rs80956812, SNP rs81471381, SNP rs81421148, and SNP rs81399474. The significant effect on litter traits in LN was determined for SNP rs81421148 and SNP rs81319839. AKT3 gene was identified as perspective candidate gene, whose biological functions, as well as the results obtained in our work and in other studies, indicate its potential role in the reproductive process regulation in pigs. In general, the data obtained help to explain the genetic mechanisms of reproductive traits.
Collapse
Affiliation(s)
- Lyubov V. Getmantseva
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | - Siroj Yu Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | | | - Anatoly Yu Kolosov
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
- Don State Agrarian University, Persianovski 346493, Russia
| | - Neckruz F. Bakoev
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia
| | - Maria A. Kolosova
- Southern Federal University, Rostov-on-Don 344006, Russia
- Don State Agrarian University, Persianovski 346493, Russia
| |
Collapse
|
8
|
miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep 2020; 10:10619. [PMID: 32606372 PMCID: PMC7326969 DOI: 10.1038/s41598-020-67482-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 down-regulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 down-regulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens.
Collapse
|
9
|
Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds. PLoS One 2018; 13:e0194282. [PMID: 29558483 PMCID: PMC5860705 DOI: 10.1371/journal.pone.0194282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and 51 candidate genes would be useful for the configuration phenotype in Xiang pig breed.
Collapse
|
10
|
Jeong H, Song KD, Seo M, Caetano-Anollés K, Kim J, Kwak W, Oh JD, Kim E, Jeong DK, Cho S, Kim H, Lee HK. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing. BMC Genet 2015; 16:104. [PMID: 26289667 PMCID: PMC4545873 DOI: 10.1186/s12863-015-0265-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/13/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Natural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data. RESULTS We generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism. CONCLUSIONS Results revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Seoul, Kwan-ak Gu, 151-741, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Minseok Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Seoul, Kwan-ak Gu, 151-741, Republic of Korea.
| | | | - Jaemin Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Seoul, Kwan-ak Gu, 151-741, Republic of Korea.
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Seoul, Kwan-ak Gu, 151-741, Republic of Korea.
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul, 151-919, Republic of Korea.
| | - Jae-Don Oh
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - EuiSoo Kim
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Ara-1 Dong, Jeju-Do, Jeju, 690-756, Republic of Korea.
| | - Seoae Cho
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul, 151-919, Republic of Korea.
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Seoul, Kwan-ak Gu, 151-741, Republic of Korea.
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul, 151-919, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, South Korea.
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
11
|
Sun H, Jiang R, Xu S, Zhang Z, Xu G, Zheng J, Qu L. Transcriptome responses to heat stress in hypothalamus of a meat-type chicken. J Anim Sci Biotechnol 2015; 6:6. [PMID: 25774290 PMCID: PMC4359534 DOI: 10.1186/s40104-015-0003-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Heat stress has resulted in great losses in poultry production. To address this issue, we systematically analyzed chicken hypothalamus transcriptome responses to thermal stress using a 44 k chicken Agilent microarray, Methods Hypothalamus samples were collected from a control group reared at 25°C, a heat-stress group treated at 34°C for 24 h, and a temperature-recovery group reared at 25°C for 24 h following a heat-stress treatment. We compared the expression profiles between each pair of the three groups using microarray data. Results A total of 1,967 probe sets were found to be differentially expressed in the three comparisons with P < 0.05 and a fold change (FC) higher than 1.5, and the genes were mainly involved in self-regulation and compensation required to maintain homeostasis. Consistent expression results were found for 11 selected genes by quantitative real-time PCR. Thirty-eight interesting differential expression genes were found from GO term annotation and those genes were related to meat quality, growth, and crucial enzymes. Using these genes for genetic network analysis, we obtained three genetic networks. Moreover, the transcripts of heat-shock protein, including Hsp 40 and Hsp 90, were significantly altered in response to thermal stress. Conclusions This study provides a broader understanding of molecular mechanisms underlying stress response in chickens and discovery of novel genes that are regulated in a specific thermal-stress manner. Electronic supplementary material The online version of this article (doi:10.1186/s40104-015-0003-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Shengyou Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Zebin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|