Long W, Zhao L, Yang H, Yang X, Bai Y, Xue X, Wang D, Han S. Genome-Wide Characterization of Wholly Disordered Proteins in
Arabidopsis.
Int J Mol Sci 2025;
26:1117. [PMID:
39940886 PMCID:
PMC11817481 DOI:
10.3390/ijms26031117]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we developed a bioinformatics method for screening more than 50 amino acids in the genome level and found a total of 27 categories, including 56 WDPs, in Arabidopsis. After comparing with 56 randomly selected structural proteins, we found that WDPs possessed a more wide range of theoretical isoelectric point (PI), a more negative of Grand Average of Hydropathicity (GRAVY), a higher value of Instability Index (II), and lower values of Aliphatic Index (AI). In addition, by calculating the FCR (fraction of charged residue) and NCPR (net charge per residue) values of each WDP, we found 20 WDPs in R1 (FCR < 0.25 and NCPR < 0.25) group, 15 in R2 (0.25 ≤ FCR ≤ 0.35 and NCPR ≤ 0.35), 19 in R3 (FCR > 0.35 and NCPR ≤ 0.35), and two in R4 (FCR > 0.35 and NCPR > 0.35). Moreover, the gene expression and protein-protein interaction (PPI) network analysis showed that WDPs perform different biological functions. We also showed that two WDPs, SIS (Salt Induced Serine rich) and RAB18 (a dehydrin family protein), undergo the in vitro liquid-liquid phase separation (LLPS). Therefore, our results provide insight into understanding the biochemical characters and biological functions of WDPs in plants.
Collapse