1
|
Shey RA, Nchanji GT, Stong TYA, Yaah NE, Shintouo CM, Yengo BN, Nebangwa DN, Efeti MT, Chick JA, Ayuk AB, Gwei KY, Lemoge AA, Vanhamme L, Ghogomu SM, Souopgui J. One Health Approach to the Computational Design of a Lipoprotein-Based Multi-Epitope Vaccine Against Human and Livestock Tuberculosis. Int J Mol Sci 2025; 26:1587. [PMID: 40004053 PMCID: PMC11855821 DOI: 10.3390/ijms26041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Tuberculosis (TB) remains a major cause of ill health and one of the leading causes of death worldwide, with about 1.25 million deaths estimated in 2023. Control measures have focused principally on early diagnosis, the treatment of active TB, and vaccination. However, the widespread emergence of anti-tuberculosis drug resistance remains the major public health threat to progress made in global TB care and control. Moreover, the Bacillus Calmette-Guérin (BCG) vaccine, the only licensed vaccine against TB in children, has been in use for over a century, and there have been considerable debates concerning its effectiveness in TB control. A multi-epitope vaccine against TB would be an invaluable tool to attain the Global Plan to End TB 2023-2030 target. A rational approach that combines several B-cell and T-cell epitopes from key lipoproteins was adopted to design a novel multi-epitope vaccine candidate. In addition, interactions with TLR4 were implemented to assess its ability to elicit an innate immune response. The conservation of the selected proteins suggests the possibility of cross-protection in line with the One Health approach to disease control. The vaccine candidate was predicted to be both antigenic and immunogenic, and immune simulation analyses demonstrated its ability to elicit both humoral and cellular immune responses. Protein-protein docking and normal-mode analyses of the vaccine candidate with TLR4 predicted efficient binding and stable interaction. This study provides a promising One Health approach for the design of multi-epitope vaccines against human and livestock tuberculosis. Overall, the designed vaccine candidate demonstrated immunogenicity and safety features that warrant further experimental validation in vitro and in vivo.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
| | - Gordon Takop Nchanji
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Tangan Yanick Aqua Stong
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Cabirou Mounchili Shintouo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Bernis Neneyoh Yengo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Mary Teke Efeti
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joan Amban Chick
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, PMB 1023, Ota 112233, Ogun State, Nigeria;
| | - Abey Blessings Ayuk
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ketura Yaje Gwei
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| |
Collapse
|
2
|
Wei Y, Qiu T, Ai Y, Zhang Y, Xie J, Zhang D, Luo X, Sun X, Wang X, Qiu J. Advances of computational methods enhance the development of multi-epitope vaccines. Brief Bioinform 2024; 26:bbaf055. [PMID: 39951549 PMCID: PMC11827616 DOI: 10.1093/bib/bbaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Vaccine development is one of the most promising fields, and multi-epitope vaccine, which does not need laborious culture processes, is an attractive alternative to classical vaccines with the advantage of safety, and efficiency. The rapid development of algorithms and the accumulation of immune data have facilitated the advancement of computer-aided vaccine design. Here we systemically reviewed the in silico data and algorithms resource, for different steps of computational vaccine design, including immunogen selection, epitope prediction, vaccine construction, optimization, and evaluation. The performance of different available tools on epitope prediction and immunogenicity evaluation was tested and compared on benchmark datasets. Finally, we discuss the future research direction for the construction of a multiepitope vaccine.
Collapse
Affiliation(s)
- Yiwen Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital; Intelligent Medicine Institute; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, No. 180, Fenglin Road, Xuhui Destrict, Shanghai 200032, China
| | - Yisi Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Yuxi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Junting Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Dong Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Xiaochuan Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| |
Collapse
|
3
|
Kumar N, Bajiya N, Patiyal S, Raghava GPS. Multi-perspectives and challenges in identifying B-cell epitopes. Protein Sci 2023; 32:e4785. [PMID: 37733481 PMCID: PMC10578127 DOI: 10.1002/pro.4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The identification of B-cell epitopes (BCEs) in antigens is a crucial step in developing recombinant vaccines or immunotherapies for various diseases. Over the past four decades, numerous in silico methods have been developed for predicting BCEs. However, existing reviews have only covered specific aspects, such as the progress in predicting conformational or linear BCEs. Therefore, in this paper, we have undertaken a systematic approach to provide a comprehensive review covering all aspects associated with the identification of BCEs. First, we have covered the experimental techniques developed over the years for identifying linear and conformational epitopes, including the limitations and challenges associated with these techniques. Second, we have briefly described the historical perspectives and resources that maintain experimentally validated information on BCEs. Third, we have extensively reviewed the computational methods developed for predicting conformational BCEs from the structure of the antigen, as well as the methods for predicting conformational epitopes from the sequence. Fourth, we have systematically reviewed the in silico methods developed in the last four decades for predicting linear or continuous BCEs. Finally, we have discussed the overall challenge of identifying continuous or conformational BCEs. In this review, we only listed major computational resources; a complete list with the URL is available from the BCinfo website (https://webs.iiitd.edu.in/raghava/bcinfo/).
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Nisha Bajiya
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Sumeet Patiyal
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Gajendra P. S. Raghava
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| |
Collapse
|
4
|
In silico design of a polypeptide as a vaccine candidate against ascariasis. Sci Rep 2023; 13:3504. [PMID: 36864139 PMCID: PMC9981566 DOI: 10.1038/s41598-023-30445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ascariasis is the most prevalent zoonotic helminthic disease worldwide, and is responsible for nutritional deficiencies, particularly hindering the physical and neurological development of children. The appearance of anthelmintic resistance in Ascaris is a risk for the target of eliminating ascariasis as a public health problem by 2030 set by the World Health Organisation. The development of a vaccine could be key to achieving this target. Here we have applied an in silico approach to design a multi-epitope polypeptide that contains T-cell and B-cell epitopes of reported novel potential vaccination targets, alongside epitopes from established vaccination candidates. An artificial toll-like receptor-4 (TLR4) adjuvant (RS09) was added to improve immunogenicity. The constructed peptide was found to be non-allergic, non-toxic, with adequate antigenic and physicochemical characteristics, such as solubility and potential expression in Escherichia coli. A tertiary structure of the polypeptide was used to predict the presence of discontinuous B-cell epitopes and to confirm the molecular binding stability with TLR2 and TLR4 molecules. Immune simulations predicted an increase in B-cell and T-cell immune response after injection. This polypeptide can now be validated experimentally and compared to other vaccine candidates to assess its possible impact in human health.
Collapse
|
5
|
Huang Y, Zhang Z, Zhou Y. AbAgIntPre: A deep learning method for predicting antibody-antigen interactions based on sequence information. Front Immunol 2022; 13:1053617. [PMID: 36618397 PMCID: PMC9813736 DOI: 10.3389/fimmu.2022.1053617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Antibody-mediated immunity is an essential part of the immune system in vertebrates. The ability to specifically bind to antigens allows antibodies to be widely used in the therapy of cancers and other critical diseases. A key step in antibody therapeutics is the experimental identification of antibody-antigen interactions, which is generally time-consuming, costly, and laborious. Although some computational methods have been proposed to screen potential antibodies, the dependence on 3D structures still limits the application of these methods. Methods Here, we developed a deep learning-assisted prediction method (i.e., AbAgIntPre) for fast identification of antibody-antigen interactions that only relies on amino acid sequences. A Siamese-like convolutional neural network architecture was established with the amino acid composition encoding scheme for both antigens and antibodies. Results and Discussion The generic model of AbAgIntPre achieved satisfactory performance with the Area Under Curve (AUC) of 0.82 on a high-quality generic independent test dataset. Besides, this approach also showed competitive performance on the more specific SARS-CoV dataset. We expect that AbAgIntPre can serve as an important complement to traditional experimental methods for antibody screening and effectively reduce the workload of antibody design. The web server of AbAgIntPre is freely available at http://www.zzdlab.com/AbAgIntPre.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China,Department of Biomedical Informatics, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China,*Correspondence: Ziding Zhang, ; Yuan Zhou,
| | - Yuan Zhou
- Department of Biomedical Informatics, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China,*Correspondence: Ziding Zhang, ; Yuan Zhou,
| |
Collapse
|
6
|
Shey RA, Ghogomu SM, Nebangwa DN, Shintouo CM, Yaah NE, Yengo BN, Nkemngo FN, Esoh KK, Tchatchoua NMT, Mbachick TT, Dede AF, Lemoge AA, Ngwese RA, Asa BF, Ayong L, Njemini R, Vanhamme L, Souopgui J. Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1046522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost a decade ago, it was recognized that the global elimination of onchocerciasis by 2030 will not be feasible without, at least, an effective prophylactic and/or therapeutic vaccine to complement chemotherapy and vector control strategies. Recent advances in computational immunology (immunoinformatics) have seen the design of novel multi-epitope onchocerciasis vaccine candidates which are however yet to be evaluated in clinical settings. Still, continued research to increase the pool of vaccine candidates, and therefore the chance of success in a clinical trial remains imperative. Here, we designed a multi-epitope vaccine candidate by assembling peptides from 14 O. volvulus (Ov) proteins using an immunoinformatics approach. An initial 126 Ov proteins, retrieved from the Wormbase database, and at least 90% similar to orthologs in related nematode species of economic importance, were screened for localization, presence of transmembrane domain, and antigenicity using different web servers. From the 14 proteins retained after the screening, 26 MHC-1 and MHC-II (T-cell) epitopes, and linear B-lymphocytes epitopes were predicted and merged using suitable linkers. The Mycobacterium tuberculosis Resuscitation-promoting factor E (RPFE_MYCTU), which is an agonist of TLR4, was then added to the N-terminal of the vaccine candidate as a built-in adjuvant. Immune simulation analyses predicted strong B-cell and IFN-γ based immune responses which are necessary for protection against O. volvulus infection. Protein-protein docking and molecular dynamic simulation predicted stable interactions between the 3D structure of the vaccine candidate and human TLR4. These results show that the designed vaccine candidate has the potential to stimulate both humoral and cellular immune responses and should therefore be subject to further laboratory investigation.
Collapse
|
7
|
Hufsky F, Abecasis A, Agudelo-Romero P, Bletsa M, Brown K, Claus C, Deinhardt-Emmer S, Deng L, Friedel CC, Gismondi MI, Kostaki EG, Kühnert D, Kulkarni-Kale U, Metzner KJ, Meyer IM, Miozzi L, Nishimura L, Paraskevopoulou S, Pérez-Cataluña A, Rahlff J, Thomson E, Tumescheit C, van der Hoek L, Van Espen L, Vandamme AM, Zaheri M, Zuckerman N, Marz M. Women in the European Virus Bioinformatics Center. Viruses 2022; 14:1522. [PMID: 35891501 PMCID: PMC9319252 DOI: 10.3390/v14071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ana Abecasis
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, New University of Lisbon, 1349-008 Lisbon, Portugal
| | - Patricia Agudelo-Romero
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - Magda Bletsa
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Katherine Brown
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Claudia Claus
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Stefanie Deinhardt-Emmer
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Li Deng
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Virology, Helmholtz Centre Munich-German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Caroline C. Friedel
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - María Inés Gismondi
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Agrobiotechnology and Molecular Biology (IABIMO), National Institute for Agriculture Technology (INTA), National Research Council (CONICET), Hurlingham B1686IGC, Argentina
- Department of Basic Sciences, National University of Luján, Luján B6702MZP, Argentina
| | - Evangelia Georgia Kostaki
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Denise Kühnert
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Urmila Kulkarni-Kale
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Karin J. Metzner
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irmtraud M. Meyer
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Faculty of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Laura Miozzi
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, 10135 Torino, Italy
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Sofia Paraskevopoulou
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Methods Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, 13353 Berlin, Germany
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Janina Rahlff
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linneaus University, 391 82 Kalmar, Sweden
| | - Emma Thomson
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Charlotte Tumescheit
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Lia van der Hoek
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| | - Lore Van Espen
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Anne-Mieke Vandamme
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
- Institute for the Future, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Maryam Zaheri
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Neta Zuckerman
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan 52621, Israel
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (A.A.); (P.A.-R.); (M.B.); (K.B.); (C.C.); (S.D.-E.); (L.D.); (C.C.F.); (M.I.G.); (E.G.K.); (D.K.); (U.K.-K.); (K.J.M.); (I.M.M.); (L.M.); (L.N.); (S.P.); (A.P.-C.); (J.R.); (E.T.); (C.T.); (L.v.d.H.); (L.V.E.); (A.-M.V.); (M.Z.); (N.Z.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|