1
|
Hannon E, Dempster EL, Davies JP, Chioza B, Blake GET, Burrage J, Policicchio S, Franklin A, Walker EM, Bamford RA, Schalkwyk LC, Mill J. Quantifying the proportion of different cell types in the human cortex using DNA methylation profiles. BMC Biol 2024; 22:17. [PMID: 38273288 PMCID: PMC10809680 DOI: 10.1186/s12915-024-01827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex. RESULTS We tested eight reference panels containing different combinations of neuronal- and glial cell types and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empirically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain deconvolution models produce accurate estimates of cellular proportions from profiles generated on postnatal human cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal cells in the human cortex and identify significant associations between increased Alzheimer's disease neuropathology and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of NeuNNeg/SOX10Pos nuclei. CONCLUSIONS Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. These models are available as a resource to the community enabling the control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk cortex tissue.
Collapse
Affiliation(s)
- Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK.
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Jonathan P Davies
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Barry Chioza
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Georgina E T Blake
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Stefania Policicchio
- Italian Institute of Technology, Center for Human Technologies (CHT), Genova, Italy
| | - Alice Franklin
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Emma M Walker
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Rosemary A Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Leonard C Schalkwyk
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| |
Collapse
|
2
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Molinaro AM, Pike SC, Karra P, Christensen BC, Salas LA. Hierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Front Neurosci 2023; 17:1198243. [PMID: 37404460 PMCID: PMC10315586 DOI: 10.3389/fnins.2023.1198243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The human brain comprises heterogeneous cell types whose composition can be altered with physiological and pathological conditions. New approaches to discern the diversity and distribution of brain cells associated with neurological conditions would significantly advance the study of brain-related pathophysiology and neuroscience. Unlike single-nuclei approaches, DNA methylation-based deconvolution does not require special sample handling or processing, is cost-effective, and easily scales to large study designs. Existing DNA methylation-based methods for brain cell deconvolution are limited in the number of cell types deconvolved. Methods Using DNA methylation profiles of the top cell-type-specific differentially methylated CpGs, we employed a hierarchical modeling approach to deconvolve GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. Results We demonstrate the utility of our method by applying it to data on normal tissues from various brain regions and in aging and diseased tissues, including Alzheimer's disease, autism, Huntington's disease, epilepsy, and schizophrenia. Discussion We expect that the ability to determine the cellular composition in the brain using only DNA from bulk samples will accelerate understanding brain cell type composition and cell-type-specific epigenetic states in normal and diseased brain tissues.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl T. Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven C. Pike
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Prasoona Karra
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
3
|
Bell-Glenn S, Salas LA, Molinaro AM, Butler RA, Christensen BC, Kelsey KT, Wiencke JK, Koestler DC. Calculating detection limits and uncertainty of reference-based deconvolution of whole-blood DNA methylation data. Epigenomics 2023; 15:435-451. [PMID: 37337720 PMCID: PMC10308256 DOI: 10.2217/epi-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
DNA methylation (DNAm)-based cell mixture deconvolution (CMD) has become a quintessential part of epigenome-wide association studies where DNAm is profiled in heterogeneous tissue types. Despite being introduced over a decade ago, detection limits, which represent the smallest fraction of a cell type in a mixed biospecimen that can be reliably detected, have yet to be determined in the context of DNAm-based CMD. Moreover, there has been little attention given to approaches for quantifying the uncertainty associated with DNAm-based CMD. Here, analytical frameworks for determining both cell-specific limits of detection and quantification of uncertainty associated with DNAm-based CMD are described. This work may contribute to improved rigor, reproducibility and replicability of epigenome-wide association studies involving CMD.
Collapse
Affiliation(s)
- Shelby Bell-Glenn
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rondi A Butler
- Departments of Epidemiology & Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
- Department of Molecular & Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Karl T Kelsey
- Departments of Epidemiology & Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|