1
|
Tello-Salgado I, Torres-Obando A, Mir-Garcia M, Guzmán-Razón V, Urquiza VN, Nava-García E, Montiel-Arcos E, Díaz-Hernández MT, Mojica-Cardoso C, Contreras Ochoa CO. Cytotoxicity and Cell Death Induction on a Cervical Cancer Cell Line by Crude Extracellular Product of Omphalotus nidiformis (Agaricomycetes) Mycelium. Int J Med Mushrooms 2025; 27:35-44. [PMID: 39819521 DOI: 10.1615/intjmedmushrooms.2024057069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Fungi have proved to be useful sources of compounds with antineoplastic properties. Although several metabolites isolated from species of the genus Omphalotus have shown cytotoxic effects on tumor cell lines. Few works have studied Omphalotus nidiformis. The activity of a whole crude extracellular product of a O. nidiformis micelyum strain is reported herein; this crude extract was able to reduce viability of cervical cancer HeLa cells (78% to 29%) after 24 h of exposure. Upon fractionation with dichloromethane, the fraction F1 was also capable of inhibiting cell viability, but the fraction F2 showed no effect. Both the crude extracellular product and F1 induced time- and concentration-dependent cell death by apoptosis through activation of caspase-3/7; in addition, both products induced a 3.5- to 5-fold increase in autophagy. The major components identified in both extracts by gas chromatography/mass spectrometry were 9-octadecenamide, tetradecanamide, hexadecanamide, and squalene, which could be responsible for the cytotoxic effect. Fungal metabolites with cytotoxic activity could be used in the future in combination with antineoplastic drugs for cancer treatment.
Collapse
Affiliation(s)
- Isaac Tello-Salgado
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Alexzandra Torres-Obando
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Marisol Mir-Garcia
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos CP 62100, Mexico
| | - Vanessa Guzmán-Razón
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Veronica-Nuñez Urquiza
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Elizabeth Nava-García
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Elizur Montiel-Arcos
- Centro de Investigaciones Biologicas, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa 62209 Cuernavaca, Morelos, México
| | - María T Díaz-Hernández
- Laboratorio de Micología, Centro de Investigaciones Biológicas, Cuernavaca, Morelos CP 62209, Mexico
| | - Carlos Mojica-Cardoso
- Laboratorio de Patología. Hospital del Niño y Adolescente Morelense, Morelos CP 62765, Mexico
| | | |
Collapse
|
2
|
Ma T, Zong H, Lu X, Zhuge B. Candida glycerinogenes-Promoted α-Pinene and Squalene Co-production Strategy Based on α-Pinene Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5250-5260. [PMID: 36971258 DOI: 10.1021/acs.jafc.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
α-Pinene is a naturally occurring monoterpene, which is widely used in fragrances, cosmetics, and foods. Due to the high cellular toxicity of α-pinene, this work considered the application of Candida glycerinogenes, an effective industrial strain with high resistance, in α-pinene synthesis. It was found that α-pinene-induced stress resulted in an intracellular accumulation of reactive oxygen species with an increased formation of squalene as a cytoprotective compound. As squalene is a downstream product in the mevalonate (MVA) pathway for α-pinene synthesis, a strategy based on the promotion of α-pinene and squalene co-production under α-pinene stress is proposed. By introducing the α-pinene synthesis pathway and enhancing the MVA pathway, the production of both α-pinene and squalene is increased. We have demonstrated that intracellular synthesis of α-pinene is effective in promoting squalene synthesis. The generation of intercellular reactive oxygen that accompanies α-pinene synthesis promotes squalene synthesis with a resultant cellular protection and upregulation of MVA pathway genes that facilitate α-pinene production. In addition, we have overexpressed phosphatase and introduced NPP as a substrate to synthesize α-pinene, where co-dependent fermentation yielded 208 mg/L squalene and 12.8 mg/L α-pinene. This work establishes a viable strategy to promote terpene-co-dependent fermentation based on stress.
Collapse
Affiliation(s)
- Tengfei Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Song Y, Guan Z, van Merkerk R, Pramastya H, Abdallah II, Setroikromo R, Quax WJ. Production of Squalene in Bacillus subtilis by Squalene Synthase Screening and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4447-4455. [PMID: 32208656 PMCID: PMC7168599 DOI: 10.1021/acs.jafc.0c00375] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Squalene synthase (SQS) catalyzes the conversion of two farnesyl pyrophosphates to squalene, an important intermediate in between isoprene and valuable triterpenoids. In this study, we have constructed a novel biosynthesis pathway for squalene in Bacillus subtilis and performed metabolic engineering aiming at facilitating further exploitation and production of squalene-derived triterpenoids. Therefore, systematic studies and analysis were performed including selection of multiple SQS candidates from various organisms, comparison of expression vectors, optimization of cultivation temperatures, and examination of rate-limiting factors within the synthetic pathway. We were, for the first time, able to obtain squalene synthesis in B. subtilis. Furthermore, we achieved a 29-fold increase of squalene yield (0.26-7.5 mg/L) by expressing SQS from Bacillus megaterium and eliminating bottlenecks within the upstream methylerythritol-phosphate pathway. Moreover, our findings showed that also ispA could positively affect the production of squalene.
Collapse
Affiliation(s)
- Yafeng Song
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Zheng Guan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hegar Pramastya
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Pharmaceutical
Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, 40132 Bandung, Indonesia
| | - Ingy I. Abdallah
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
| | - Rita Setroikromo
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J. Quax
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
4
|
Li T, Liu GS, Zhou W, Jiang M, Ren YH, Tao XY, Liu M, Zhao M, Wang FQ, Gao B, Wei DZ. Metabolic Engineering of Saccharomyces cerevisiae To Overproduce Squalene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2132-2138. [PMID: 31989819 DOI: 10.1021/acs.jafc.9b07419] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Squalene has wide applications in the food and pharmaceutical industries. Engineering microbes to produce squalene is a promising alternative for traditional production approaches. In this study, squalene production was enhanced to 978.24 mg/L through stepwise overexpression of the enzymes that catalyze acetyl-CoA to squalene. Subsequently, to increase the activity of HMG-CoA reductase and alleviate the high dependence on NADPH, the HMG-CoA reductase (NADH-HMGR) from Silicibacter pomeroyi, highly specific for NADH, was introduced, which increased squalene production to 1086.31 mg/L. Native ethanol dehydrogenase ADH2 and acetaldehyde dehydrogenase ADA from Dickeya zeae were further overexpressed, which enhanced the capability to utilize ethanol for squalene synthesis and endowed the engineered strain with greater adaptability to high ethanol concentrations. Finally, a remarkable squalene production of 9472 mg/L was obtained from ethanol via carbon source-controlled fed-batch fermentation. This study will greatly accelerate the process of developing microbial cell factories for squalene production.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Guo-Song Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Wei Zhou
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Min Jiang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yu-Hong Ren
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|